技术文章

拉曼光谱的原理和发展

北京希望世纪科技有限公司 >> 进入商铺

2017/7/20 13:33:18

拉曼光谱(Raman spectra),是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

192

拉曼光谱 拉曼光谱

8年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线,频率较大的成分υ01又称为反斯托克斯线。靠近瑞利散射线两侧的谱线称为小拉曼光谱;远离瑞利线的两侧出现的谱线称为大拉曼光谱。瑞利散射线的强度只有入射光强度的10-3,拉曼光谱强度大约只有瑞利线的10-3。小拉曼光谱与分子的转动能级有关, 大拉曼光谱与分子振动-转动能级有关。拉曼光谱的理论解释是,入射光子与分子发生非弹性散射,分子吸收频率为υ0的光子,发射υ0-υ1的光子(即吸收的能量大于释放的能量),同时分子从低能态跃迁到高能态(斯托克斯线);分子释放频率为υ0的光子,发射υ01的光子(即释放的能量大于吸收的能量),同时分子从高能态跃迁到低能态(反斯托克斯线 )。分子能级的跃迁仅涉及转动能级,发射的是小拉曼光谱;涉及到振动-转动能级,发射的是大拉曼光谱。与分子红外光谱不同,极性分子和非极性分子都能产生拉曼光谱。激光器的问世,提供了高强度单色光,有力推动了拉曼散射的研究及其应用。拉曼光谱的应用范围遍及化学、物理学、生物学和医学等各个领域,对于纯定性分析、高度定量分析和测定分子结构都有很大价值。

原理:

电化学原位拉曼光谱法, 是利用物质分子对入射光所产生的频率发生较大变化的散射现象, 将单色入射光(包括圆偏振光和线偏振光) 激发受电极电位调制的电极表面, 通过测定散射回来的拉曼光谱信号(频率、强度和偏振性能的变化)与电极电位或电流强度等的变化关系。一般物质分子的拉曼光谱很微弱, 为了获得增强的信号, 可采用电极表面粗化的办法, 可以得到强度高104-107倍的表面增强拉曼散射(Surface Enhanced Raman Scattering, SERS) 光谱, 当具有共振拉曼效应的分子吸附在粗化的电极表面时, 得到的是表面增强共振拉曼散射(SERRS)光谱, 其强度又能增强102-103

电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、收集系统、分光系统和检测系统构成, 光源一般采用能量集中、功率密度高的激光, 收集系统由透镜组构成, 分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射和杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件。原位电化学拉曼池一般具有工作电极、辅助电极和参比电极以及通气装置。为了避免腐蚀性溶液和气体侵蚀仪器, 拉曼池必须配备光学窗口的密封体系。在实验条件允许的情况下, 为了尽量避免溶液信号的干扰, 应采用薄层溶液(电极与窗口间距为0.1~1mm) , 这对于显微拉曼系统很重要, 光学窗片或溶液层太厚会导致显微系统的光路改变, 使表面拉曼信号的收集效率降低。电极表面粗化的zui常用方法是电化学氧化- 还原循环(Oxidation-Reduction Cycle,ORC)法, 一般可进行原位或非原位ORC处理。

目前采用电化学原位拉曼光谱法测定的研究进展主要有: 一是通过表面增强处理把测检体系拓宽到过渡金属和半导体电极。虽然电化学原位拉曼光谱是现场检测较灵敏的方法, 但仅能有银、铜、金三种电极在可见光区能给出较强的SERS。许多学者试图在具有重要应用背景的过渡金属电极和半导体电极上实现表面增强拉曼散射。二是通过分析研究电极表面吸附物种的结构、取向及对象的SERS 光谱与电化学参数的关系,对电化学吸附现象作分子水平上的描述。三是通过改变调制电位的频率, 可以得到在两个电位下变化的“时间分辨谱”, 以分析体系的SERS 谱峰与电位的关系, 解决了由于电极表面的SERS 活性位随电位而变化而带来的问题。

相关产品

猜你喜欢

当前客户在线交流已关闭
请电话联系他 :