透射电镜高温力学原位系统
新品介绍
上市时间:2022/2/1 0:00:00
创新点:超新芯公司研发的CHIPNOVA Gravity Series In-Situ Holders(高温力学原位系统)是通过在原位样品杆内置力学模块、结合MEMS(微机电系统)微加工工艺制备的微纳原位加热芯片,可对材料进行高温条件下高精度力学测量及结构分析。该系统利用纳米探针或原位芯片,在1000℃内对样品进行操纵和拉应力、压应力测量,动态地对样品的晶体结构、化学组分进行综合表征。
该系统具备的功能包括:原位压缩微纳试样进行应力应变曲线监测;原位拉伸微纳试样进行应力应变曲线监测;具有超高精度和灵敏度力学参数的应变量测试能力,能准确得到定量的载荷和位移数据,具有*的稳定性。
产品简介
详细信息
我们的优势
力学性能
1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。
2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。
3.nN级力学测量噪音。
4.具备连续的载荷-位移-时间数据实时自动收集功能。
5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。
优异的热学性能
1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。
2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。
3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。
4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。
5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。
智能化软件
1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。
2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。
3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。
基本参数
类别 | 项目 | 参数 |
基本参数 | 杆体材质 | 高强度钛合金 |
控制方式 | 高精度压电陶瓷 | |
倾转角 | α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号) | |
适用电镜 | Thermo Fisher/FEI, JEOL, Hitachi | |
适用极靴 | ST, XT, T, BioT, HRP, HTP, CRP | |
(HR)TEM/STEM | 支持 | |
(HR)EDS/EELS/SAED | 支持 |
应用案例
600°C高温下铜纳米柱力学压缩实验
以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。