便携式原子力显微镜
——AFM纳米形貌表征从未如此简单!
ICSPI公司在便携式nGauge原子力显微镜(AFM)的基础上进行了全新升级,推出了新一代的便携式原子力显微镜Redux。Redux原子力显微镜(AFM)除了具有方便携带,操作简单,扫描速度快,可扫描大尺寸样品,无需维护等优点,还可以迅速找到感兴趣的测量位置,实现相关区域的快速高精度测量。适合各类纳米表征应用场景,从科学研究、高等教育到工业用户的样品3D表面形貌快速成像分析等,革命性的创新技术的降低了传统AFM的复杂操作,也的拓宽了传统AFM的应用范围!
适合各类纳米表征应用场景
半导体工业
材料工业
纳米技术
生命科技
涂料,聚合物和复合材料等
高等教育
......
产品特点
更小巧,更便携
AFM微纳机电芯片,使得Redux/nGauge原子力显微镜(AFM)系统仅有公文包大小,可随身携带。
更简单,更易用
只需点击鼠标三次即可获得样品表面纳米级形貌信息,无需配置减震平台。
第一步:通过内置光学显微镜寻找扫描区域;
第二步:Redux/nGauge帮助扫描探针自动寻找样品表面;
第三步:点击扫描,获取样品表面形貌信息。
维护简单,性价比高
类金刚石针尖保证AFM探针超长寿命,且无需繁琐的更换针尖操作和其他后期维护工作。
Redux采用的压电AFM探针技术以及耐用的探针针尖(左图)。中图为一根探针第215次扫描样品的结果,右图为第1164次扫描样品的结果
设备参数:
Redux AFM
左:Redux原子力显微镜(AFM);右:Redux原子力显微镜实际使用场景
Redux微型原子力显微镜n5(噪声基底优于0.5nm)
Redux微型原子力显微镜n7(噪声基底优于0.15nm)
产品特点
快速:1分钟内便可获取样品信息
易用:扫描只需点击三次鼠标
简单:全新升级的X, Y和Z定位系统
技术参数
AFM技术参数 |
最大扫描范围(XY) | 20 μm x 20 μm |
最大扫描高度(Z) | 10 μm |
扫描速度 | 80 秒 (256 x 256 pixel, 20 μm x 20 μm) |
噪音基底 | <0.5nm 或 <0.15 nm |
XY扫描分辨率 | <0.5 nm |
样品台参数 |
样品台尺寸 | 105 mm x 95 mm x 20 mm |
可移动范围 | 10 mm x 10 mm |
光学显微镜参数 |
物镜 | 10x, 0.25 NA |
视场 | 2.25 mm × 1.25 mm |
分辨率 | 1920 x 1080 FHD Video output |
整体尺寸 |
尺寸 (长x 宽 x 高) | 23.2 cm × 22.0 cm × 24.6 cm |
重量 | 4 kg |
软件需求 |
连接方式 | USB |
操作系统 | Windows 10, 11 |
电源 |
电压 | 100-240 VAC ~ 50/60 Hz |
电流 | 12 VDC, 5 A |
nGauge AFM
成像类型:形貌图,相位图
XY 扫描区域:100 µm × 100 µm
XY 扫描分辨率:<0.5 nm
Z向扫描范围:10 µm
快速扫描成像时间:16 秒
可表征样品大尺寸:100 mm x 50 mm x 20 mm
可表征样品大重量:1 kg
各表征手段对比
| Redux/nGauge AFM | 传统 AFM | SEM |
大气环境下运行 |
|
|
|
自动寻找样品表面 |
|
| N/A |
设备安装时间 | 5 分钟 | 1-2 周 | 1-2 周 |
扫描样品时间 | 2 分钟 | 1 小时 | 30 分钟 – 1 小时 |
随测随走 |
| |
|
培训时间 | 1 小时 | 12+ 小时 | 12+ 小时 |
无需激光对准 |
| |
|
普通市电/USB供电 |
| |
|
更换探针难度 |
| | N/A |
3D表面形貌成像 |
|
|
|
成像分辨率 |
|
|
|
不导电样品表征 |
| |
|
测试数据
微柱阵列三维成像
二氧化硅聚合物复合材料相扫描结果
半间距为200nm的光栅形貌表征
数据存储单元纳米结构三维形貌表征
丹麦Akasel公司检测钢铁抛光样品表面
美国Biotech公司表征皮肤样本
美国Applied Nanotool公司微纳光学器件品控
光电子域器件检测
发表文章
1. Zhao, P., et al., Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. Science of The Total Environment, 2021. 775: p. 145846.
2. Guo, P., et al., Vanadium dioxide phase change thin films produced by thermal oxidation of metallic vanadium. Thin Solid Films, 2020. 707: p. 138117.
3. Connolly, L.G., et al., A tip-based metrology framework for real-time process feedback of roll-to-roll fabricated nanopatterned structures. Precision Engineering, 2019. 57: p. 137-148.
4. O'Neill, C., et al., Effect of tooth brushing on gloss retention and surface roughness of five bulk‐fill resin composites. Journal of Esthetic and Restorative Dentistry, 2018. 30(1): p. 59-69.
用户单位
nGauge全球代表性用户