$item.Name
$item.Name
$item.Name
$item.Name

首页>工业在线及过程控制仪>其它工业过程控制及在线分析仪>氧分析仪/氧气分析仪

RF-O2 RF-O2荧光光纤氧气测量技术——氧气测量全面解决方案

型号
RF-O2
参数
产地类别:进口
北京易科泰生态技术有限公司

高级会员16年 

代理商

该企业相似产品

水环境自动控制系统

在线询价

水下溶解氧、pH、温度多参数记录仪

在线询价

水下溶解氧、pH、温度多参数在线监测仪

在线询价

水下溶解氧、pH、温度多参数在线监测系统

在线询价

Easychem Junior小型化学分析仪

在线询价
土壤与植物生理生态研究监测、环境气象监测、水文水质及地下水监测、水土保持研究监测、荒漠化监测、精准农业以及动物生态研究等仪器技术的引进推广和系统集成,并为生态环境实验研究和规划设计提供技术方案和分析测量。

   北京易科泰生态技术有限公司成立于2002年,为中关村高新技术企业,致力于生态-农业-健康研究监测技术推广、研发与服务,特别是在光谱成像技术(高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感等)、植物表型分析技术、呼吸与能量代谢测量技术等方面,与专业企业PSI、Specim、Sable等合作,致力于植物科学、土壤与地球科学、动物能量代谢、水体与藻类及生态环境领域先进仪器技术的引进推广和技术研发集成,为植物/作物表型分析、生态修复及生态保护、能量代谢测量等提供规划设计、技术方案与系统集成、技术咨询与科技服务。公司技术团队80%以上具备硕士或硕士以上学位,并与*研究生院、中科院植物研究所、中科院动物所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学、中国海洋大学、陕西师范大学、内蒙古大学等建立了长期的技术合作交流关系。


   公司下设有叶绿素荧光技术与植物表型业务部、EcoTech®实验室、光谱成像与无人机遥感事业部及无人机遥感研究中心(与陕西师范大学合作建立)、动物能量代谢实验室、内蒙古阿拉善蒙古牛生态牧业研究院及青岛分公司。实验室拥有叶绿素荧光成像、叶绿素荧光仪、水体藻类荧光仪、SPECIM高光谱仪、WORKSWELL红外热成像仪、EasyChem全自动化学分析仪、MicroMac1000水质在线监测系统、ACE土壤呼吸自动监测系统、SoilBox便携式土壤气体通量测量系统、动物呼吸测量系统、LCpro 光合作用测量仪、Hood土壤入渗仪、年轮分析仪等各种仪器设备,可以进行实验研究分析、实验培训等,欢迎与易科泰生态研究室开展合作研究。


   易科泰公司与欧洲PSI公司(叶绿素荧光技术与表型分析技术)、美国SABLE公司(动物能量代谢技术)、欧洲SPECIM公司(高光谱成像技术)、欧洲WORKSWELL公司(红外热成像技术)、欧洲ATOMTRACE公司(LIBS元素分析技术)、欧洲BCN无人机遥感中心、欧洲ITRAX公司(样芯密度扫描与元素分析)、美国VERIS公司、英国ADC公司、德国UGT公司、欧洲SYSTEA公司等著名生态仪器技术领域的研发机构和厂商建立了密切的合作关系,在FluorCam叶绿素荧光成像与荧光测量技术、PlantScreen植物表型分析技术、高光谱成像技术、红外热成像技术、光合作用与植物生理生态研究监测、土壤呼吸与碳通量研究监测、动物呼吸代谢测量、水质分析与藻类研究监测、CoreScanner样芯密度CT与元素分析技术、LIBS元素分析技术、无人机生态遥感技术等生态仪器技术及其系统方案集成有着丰富的经验,成为我国农业、林业、地球科学、生态环境研究等领域科技进步的重要研究技术支持力量。由公司研制生产的EcoDrone®无人机遥感平台、SoilTron®多功能小型蒸渗仪技术、SoilBox®土壤呼吸测量技术、PhenoPlot®轻便型作物表型分析系统、SCG-N土壤剖面CO2/O2梯度监测系统、植物生理生态监测技术、动物能量代谢测量技术等,在中科院修购项目、*学科群项目、CERN网络(生态系统监测网络)等项目中发挥重要作用。


   “工欲善其事,必先利其器”,易科泰公司将秉承“利其器,善其事”的经营理念,为国内生态-农业-健康研究与发展提供优秀的技术方案和服务。


欢迎关注北京易科泰微信公众号







详细信息

RF-O2荧光光纤氧气测量技术——氧气测量全面解决方案

 

    RF-O2荧光光纤氧气测量技术是基于REDFLASH光极传感器技术的氧气测量技术,由欧洲Pyroscience公司及Graz大学等科学家研制生产,由光极氧气传感器、测量仪及软件组成,广泛应用于环境科学、生态科学、植物科学、动物科学、海洋科学、生物医学、生物技术、食品科学等各个领域,其主要功能特点如下

  1. REDFLASH光极氧气传感器技术,高精确度、高稳定性、高时空解析度、低能耗、无耗氧、无交叉敏感性
  2. 传感器类型灵活多样,有探头式、探针式、非接触式(sensor spot)及纳米微粒式等,适应于液体和气体不同条件下的O2测量
  3. 有内置sensor spot的流通管和呼吸瓶,非接触式测量流动液体的溶解氧及呼吸瓶内液体或气体中氧气含量
  4. 轻便紧凑型FireStingO2测量仪,内置水汽、气压传感器,有1、2、4通道供选配,可分别接1个、2个、4个光极氧气传感器,另有Mini型FireStingO2-mini供选配
  5. U盘式PiccolO2测量仪——世界上zui小的O2测量仪,可连接一个O2传感器,USB口连接电脑,即插即用

测量原理:

    REDFLASH光极O2传感器技术,利用*的O2敏感REDFLASH指示剂,通过610-630nm调制红光激发,REDFLASH指示剂发出760-790nm红外荧光,荧光强度随接触的O2分子浓度升高而发生荧光淬灭,这种荧光动态通过光纤传输到测量仪,测量仪灵敏地检测其相位漂移并据此换算成O2浓度

 

 

应用领域:

  1. 水体溶解氧测量监测、藻类及藻类生物膜光合作用与呼吸作用测量监测
  2. 植物光合作用与呼吸作用测量监测
  3. 水生动物(鱼类、水生昆虫等无脊椎动物、浮游动物等呼吸代谢测量
  4. 陆生动物、实验动物、动物组织、血液等呼吸代谢测量
  5. 土壤、湿地、海洋沉积、河湖沉积剖面O2测量
  6. 生物反应器、发酵过程、酶动力学、细胞培养等O2测量监测
  7. 粮食食品储运、葡萄酒等O2测量监测
  8. 污水处理、沼气、垃圾填埋场、有机物降解等O2测量监测

技术指标:

  1. FireStingO2(FSO2)测量仪:
    1. 有1通道、2通道、4通道可供选配,分别可接1个、2个和4个O2传感器,可并联组成8通道甚至更多通道;另具备一个温度传感器通道(可选配4通道温度传感器)
    2. 激发光源620nm,监测器760nm(NIR)
    3. 采样频率:每秒4次
    4. 内置气压传感器,300-1100mbar,0.06mbar分辨率,精确度±3mbar
    5. 内置湿度传感器,0-100%,分辨率0.04%,精确度±0.2%
    6. 内置温度传感器,-40-125°C,分辨率0.01°C,精确度±0.3°C
    7. 具模拟输出和自动模式,0-2.5VDC
    8. USB接口,通过USB口PC供电
    9. 大小:68x120x30mm,重350g
  2. PiccolO2 U盘式测量仪:大小仅15x15x54mm,重量约20g,单通道,激发光620nm,检测器760nm,采样频率每秒20次。可并联组成多通道测量系统。可通过PiccoTHP测量温湿度和气压并进行补偿

 

  1. 探头式O2传感器:直径3mm,测量范围0-50%(0-23mg/l)(可选配其它范围),检测极限0.02%(0.01mg/l),分辨率0.05%(0.025mg/l)@20% O2,精确度±0.2%(0.1mg/l)@20% O2,zui低使用寿命1千万数据点,存储时间大于3年(室温暗处储放)
  2. 探针式O2传感器:有固定探针式、可伸缩探针式、尖头式及圆头式等不同类型供选配;探针直径有50μm、230μm430μm等规格测量范围0-50%(0-23mg/l)(可选配其它范围),检测极限0.02%(0.01mg/l),分辨率0.05%(0.025mg/l)@20% O2,精确度±0.2%(0.1mg/l)@20% O2,zui快响应时间小于1s(与探针粗细有关),zui低使用寿命1百万数据点,存储时间大于3年(室温暗处储放)

 

  1. 非接触式(sensor spot)O2传感器(见下图):用于非接触性测量监测透明容器中的氧气含量,传感器贴用硅胶等贴附在容器内壁,通过固定在外壁的光纤将荧光动态信号传输到测量仪以检测O2浓度;测量范围0-50%(0-23mg/l)(可选配其它范围),检测极限0.02%(0.01mg/l),分辨率0.05%(0.025mg/l)@20% O2,精确度±0.2%(0.1mg/l)@20% O2,zui低使用寿命2千万数据点,存储时间大于3年(室温暗处储放)

 

  1. 纳米微粒传感器(参见上右图):纳米技术,用于非接触性测量微量液体中O2含量,即时响应,测量范围0-50%(0-23mg/l),检测极限0.02%(0.01mg/l),分辨率0.05%(0.025mg/l)@20% O2,存储时间大于3年(室温暗处储放)
  2. 流通管:内置非接触式O2传感器,用于流动液体O2测量监测(如鱼类呼吸代谢测量等),测量范围0-50%(0-23mg/l)(可选配其它范围),检测极限0.02%(0.01mg/l),分辨率0.05%(0.025mg/l)@20% O2,精确度±0.2%(0.1mg/l)@20% O2,zui低使用寿命1千万数据点,存储时间大于3年(室温暗处储放)
  3. 呼吸瓶:内置非接触式O2传感器,用于生物呼吸测量(如藻类、小型鱼类、鱼卵、昆虫等),标准配置有4ml和20ml两种规格
  4. Pyro Oxygen Logger软件用于参数设置、校准、数据显示包括图表显示、数据输出等功能

 

 

应用案例:

案例1:法国Bordeaux大学利用FSO2 4通道荧光光纤氧气测量仪,对Aquitaine海岸沉积样芯耗氧进行了测量分析,以研究海洋底栖动物活动(bioirrigation)对海岸带生态系统生态过程及生物地理化学功能(如沉积有机物的再矿化)的影响。

案例2:芬兰Turku大学利用FSO2和430μm光极氧探针,对南瓜类囊体悬浮液光合放氧进行了测量分析。

案例3:美国Woods Hole海洋学研究所,利用RF-O2非接触式光极氧气传感器(sensor spot),对海洋无脊椎动物呼吸代谢进行了测量分析,以研究其固有的生物钟与环境胁迫的关系,这些海洋无脊椎动物体重只有0.550mg。图中为翼足类软体动物在不同浓度CO2条件下的耗氧率。

案例4:澳大利亚海洋科学研究所、瑞典Gothenburg大学等组成的科学小组,利用Pyroscience的REDFLASH氧气测量技术,对河鲈(Perca fluviatilis)呼吸代谢进行测量分析,以研究其热耐受性和适应性的生理机制。他们选择波罗的海核电站附近的一个泻湖,核电站排出的热水进入该泻湖,在过去30年大量鱼类因为不适应水温升高而灭绝,但河鲈却得以繁盛,该地成为理想的研究气候变暖对鱼类种群影响的“天然实验室”。他们测量河鲈呼吸代谢率的同时,还测量其静脉血液在温度升高状态下的氧分压,静脉血是河鲈心脏供氧的主要来源,高温条件下静脉血氧气含量被认为是其心脏功能的重要限制因子。

案例5:德国Ulm大学利用FSO2测量仪和50μm可伸缩式RFO2探针,对患者脑脊髓液(CSF)样品溶解氧进行测量分析,以研究探讨神经紊乱及神经炎等疾病的生理和诊断。

 

案例6:德国农业科学与景观研究机构,利用FSO2测量仪和RFO2探针,对土壤氧气进行测量,以评估不同种类蚯蚓在低氧条件下对土壤改良的效率。

案例7:西班牙Valladolid大学利用RFO2荧光光纤氧气测量技术,监测葡萄酒橡木桶O2吸收——对葡萄酒品质至关重要但一直以来缺乏科学的了解。葡萄酒在橡木桶内(3-24个月)的过程溶解氧至关重要,因为O2调节了葡萄酒整个的熟化过程。

 

 

近期部分参考文献:

2015

1.          Experimental manipulations of tissue oxygen supply do not affect warming tolerance of European perch. Brijs et al., 2015, J Exp Biol, in press

2.          The formation of aggregates in coral reef waters under elevated concentrations of dissolved inorganic and organic carbon: A mesocosm approach. Cárdenas et al., 2015, Mar Chem, in press

3.          Efficient gas–liquid contact using microfluidic membrane devices with staggered herringbone mixers. Femmer et al., 2015, Lab on a Chip: DOI: 10.1039/C5LC00428D

4.          Three-dimensional structure and cyanobacterial activity within a desert biological soil crust?Raanan et al., 2015, Environ Microbiol: doi:10.1111/1462-2920.12859

5.          Photoacoustic lifetime imaging for direct in vivo tissue oxygen monitoring?Shao, Q. & Ashkenazi, S., 2015, J Biomed Optics 20(3): doi:10.1117/1.JBO.20.3.036004

6.          Laccase mediated oxidation of industrial lignins: Is oxygen limiting??Ortner et al., 2015, Process Biochem Vol 50 (8): 1277-1283

7.          Increased gastrointestinal blood flow: An essential circulatory modification for euryhaline rainbow trout (Oncorhynchus mykiss) migrating to sea?Brijs et al., 2015, Scientific Reports 5, Article number:10430: doi:10.1038/srep10430

8.          Not so monofunctional—a case of thermostable Thermobifida fusca catalase with peroxidase activity?Loncar, N. & Fraaije, M.W., 2015, Appl Microbiol Biotechnol Vol 99 (5): 2225-2232

9.          An Assessment of the Precision and Confidence of Aquatic Eddy Correlation Measurements?Donis et al., 2015, J Atmos Oceanic Technol 32 (3): 642–655

10.      Pharmaceuticals and personal care products alter growth and function in lentic biofilms?Shaw et al., 2015, Environ Chem 12(3): 301-306

11.      Futile cycling increases sensitivity toward oxidative stress in Escherichia coli. Adolfsen K.J & Brynildsen M.P., 2015, Metabolic Engin Vol 29: 26-35

12.      Accumulation of Basic Amino Acids at Mitochondria Dictates the Cytotoxicity of Aberrant Ubiquitin?Braun et al., 2015, Cell Reports Vol 10 (9): 1557-1571

13.      O2 mass transfer in an oscillatory flow reactor provided with smooth periodic constrictions. Individual characterization of kL and a. Ferreira et al., 2015, Chem Eng J Vol 262: 499-508

14.      Flexibility in metabolic rate confers a growth advantage under changing food availability?Auer et al., 2015, J Animal Ecol: doi: 10.1111/1365-2656.12384

15.      Oxygen metabolism and pH in coastal ecosystems: Eddy Covariance Hydrogen ion and Oxygen Exchange System (ECHOES)?Long et al., 2015, Limnol Oceanogr: Methods, DOI: 10.1002/lom3.10038

2014

1.          Ocean acidification rapidly reduces dinitrogen fixation associated with the hermatypic coral Seriatopora hystrix. Rädecker et al., 2014, Mar Ecol Progr Ser Vol 511: 297-302

2.          All puffed out: do pufferfish hold their breath while inflated??McGee, G.E. & Clark, T.D., 2014, Biol Lett Vol 10: 20140823

3.          Spectral Effects on Symbiodinium Photobiology Studied with a Programmable Light Engine. Wangpraseurt et al., 2014, PLOS One 9: e112809.

4.          The energetic cost of foraging explains growth anomalies in tadpoles exposed to predators?Barry, M.J., 2014, Physiol Biochem Zool Vol 87: 829-836

5.          A product of its environment: the epaulette shark (Hemiscyllium ocellatum) exhibits physiological tolerance to elevated environmental CO2?Heinrich et al., 2014, Conserv Physiol Vol 2 (1): doi: 10.1093/conphys/cou047

6.          Oxygen-Dependent Control of Respiratory Nitrate Reduction in Mycelium of Streptomyces coelicolor A3(2).?Fischer et al., 2014, J Bacteriol Vol 196 (23): 4152-4162

7.          A respiratory nitrate reductase active exclusively in resting spores of the obligate aerobe Streptomyces coelicolor A3(2)?Fischer et al., 2014, Mol Microbiol Vol 89 (6):1259-73

8.          Growth trajectory influences temperature preference in fish through an effect on metabolic rate?Killen, S., 2014, J Animal Ecol Vol 83 (6): 1513-1522

9.          Colored ceramic foams with tailored pore size and surface functionalization used as spawning plates for fish breeding?Kroll et al., 2014, Ceramics International Vol. 40 (10): 15763-15773

10.      Aerobic scope predicts dominance during early life in a tropical damselfish?Killen et al., 2014, Functional Ecol Vol 28 (6): 1367-1376

11.      European sea bass, Dicentrarchus labrax, in a changing ocean?Pope et al., 2014, Biogeosciences Vol 11: 2519-2530

12.      Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria?Usher et al., 2014, Corrosion Science Vol 83: 189-197

13.      Magnetic optical sensor particles: a flexible analytical tool for microfluidic devices. Ungerböck et al., 2014, Analyst Vol 139: 2551-2559

14.      Investigation and correction of the interference of ethanol, sugar and phenols on dissolved oxygen measurement in wine?Alamo-Sanza et al., 2014, Anal Chim Acta Vol 809: 162-173

15.      Bioresponsive polymers for the detection of bacterial contaminations in plaet concentrates?Gamerith et al., 2014, New Biotechnol Vol 31 (2): 150-155

16.      Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures?Rummer & Couturier, 2014, Global Change Biol Vol 20 (4): 1055-1066

17.      The effect of diel temperature and light cycles on the growth of Nannochloropsis oculata in a photobioreactor matrix. Tamburic et al., 2014, PLOS One, DOI: 10.1371/journal.pone.0086047

18.      Radiative energy budget reveals high photosynthetic efficiency in symbiont-bearing corals?Brodersen et al., 2014, J R Soc Interface Vol 11 (93), DOI: 10.1098/ rsif.2013.0997

19.      The isotope effect of denitrification in permeable sediments. Kessler et al., 2014, Geochim Cosmochim Acta Vol 133: 156-167

20.      Discovery and characterization of a 5-Hydroxymethylfurfural oxidase from Methylovorus sp. Strain MP688?Dijkman & Fraaije, 2014, Appl Environ Microbiol Vol 80 (3): 1082-1090

21.      Amperometric glucose sensing with polyaniline/poly(acrylic acid) composite film bearing covalently-immobilized glucose oxidase: A novel method combining enzymatic glucose oxidation and cathodic O2 reduction. Homma et al., 2014, J Electroanal Chem Vol 712: 119-123

22.      C*tion and isolation of N2-fixing bacteria from suboxic waters in the Baltic Sea?Bentzon-Tilia et al., 2014, FEMS Microbiol Ecol Vol 88 (2): 358-371

23.      Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis. Sudar et al., 2014, Biochem Engin J Vol 88: 12-18

24.      Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems?Payne et al., 2014, PLOS One, DOI: 10.1371/journal.pone.0090890

25.      Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary?Roberts et al., 2014, Geochim Cosmochim Acta Vol 133: 313-324

26.      Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus. Ceja-Navarro et al., 2014, The ISME J Vol 8: 6-18

27.      Optimum temperatures for growth and feed conversion in cultured hapuku (Polyprion oxygeneios) – Is there a link to aerobic metabolic scope and final temperature preference??Khan et al., 2014, Aquaculture Vol 430: 107-113

28.      Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures?Norin et al., 2014, J Exp Biol Vol 217: 244-251

29.      Aquatic Eddy Correlation: Quantifying the Artificial Flux Caused by Stirring-Sensitive O2 Sensors?Holtappels et al., 2015, PLoS ONE 10(1):e0116564. doi:10.1371/journal.pone.0116564

30.      Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms?Vogel et al., 2015, Mar Ecol Progr Ser Vol 521: 49-61

31.      Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep?Strahl et al., 2015, Comp Biochem Physiol, Part A Vol 184: 179-186

32.      Novel use of a micro-optode in overcoming the negative influence of the amperometric micro-probe on localized corrosion measurements?Taryba et al., 2015, Corrosion Science, accepted

33.      The effect of temperature and ration size on specific dynamic action and production performance in juvenile hapuku (Polyprion oxygeneios)?Khan et al., Aquaculture Vol 437: 67-74

34.      The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L?Tirsgaard et al., 2015, Comp Biochem & Physiol Part A: Mol & Integr Physiol Vol 179: 89-94

相关技术文章

同类产品推荐

相关分类导航

产品参数

产地类别 进口
企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :