$item.Name

首页>生命科学仪器>植物生理生态仪器>土壤碳通量测定系统

iSCAN 多参数土壤理化性质测绘系统

型号
参数
产地类别:进口 价格区间:面议 应用领域:环保,生物产业,农业,地矿
北京易科泰生态技术有限公司

高级会员15年 

代理商

该企业相似产品

MSP3土壤OM-EC-pH勘查测绘系统

在线询价

CoreScanner剖面沉积物元素分析系统

在线询价

VIS-NIR土壤剖面理化性质勘测系统

在线询价

VS3100 系统

在线询价

W.E.T土壤水分、温度、电导率测量仪

在线询价

POGO便携式多参数土壤监测系统

在线询价

SC-900土壤紧实度仪

在线询价

SEDIMA4-12 土壤粒径分析仪

在线询价
土壤与植物生理生态研究监测、环境气象监测、水文水质及地下水监测、水土保持研究监测、荒漠化监测、精准农业以及动物生态研究等仪器技术的引进推广和系统集成,并为生态环境实验研究和规划设计提供技术方案和分析测量。

   北京易科泰生态技术有限公司成立于2002年,为中关村高新技术企业,致力于生态-农业-健康研究监测技术推广、研发与服务,特别是在光谱成像技术(高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感等)、植物表型分析技术、呼吸与能量代谢测量技术等方面,与专业企业PSI、Specim、Sable等合作,致力于植物科学、土壤与地球科学、动物能量代谢、水体与藻类及生态环境领域先进仪器技术的引进推广和技术研发集成,为植物/作物表型分析、生态修复及生态保护、能量代谢测量等提供规划设计、技术方案与系统集成、技术咨询与科技服务。公司技术团队80%以上具备硕士或硕士以上学位,并与*研究生院、中科院植物研究所、中科院动物所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学、中国海洋大学、陕西师范大学、内蒙古大学等建立了长期的技术合作交流关系。


   公司下设有叶绿素荧光技术与植物表型业务部、EcoTech®实验室、光谱成像与无人机遥感事业部及无人机遥感研究中心(与陕西师范大学合作建立)、动物能量代谢实验室、内蒙古阿拉善蒙古牛生态牧业研究院及青岛分公司。实验室拥有叶绿素荧光成像、叶绿素荧光仪、水体藻类荧光仪、SPECIM高光谱仪、WORKSWELL红外热成像仪、EasyChem全自动化学分析仪、MicroMac1000水质在线监测系统、ACE土壤呼吸自动监测系统、SoilBox便携式土壤气体通量测量系统、动物呼吸测量系统、LCpro 光合作用测量仪、Hood土壤入渗仪、年轮分析仪等各种仪器设备,可以进行实验研究分析、实验培训等,欢迎与易科泰生态研究室开展合作研究。


   易科泰公司与欧洲PSI公司(叶绿素荧光技术与表型分析技术)、美国SABLE公司(动物能量代谢技术)、欧洲SPECIM公司(高光谱成像技术)、欧洲WORKSWELL公司(红外热成像技术)、欧洲ATOMTRACE公司(LIBS元素分析技术)、欧洲BCN无人机遥感中心、欧洲ITRAX公司(样芯密度扫描与元素分析)、美国VERIS公司、英国ADC公司、德国UGT公司、欧洲SYSTEA公司等著名生态仪器技术领域的研发机构和厂商建立了密切的合作关系,在FluorCam叶绿素荧光成像与荧光测量技术、PlantScreen植物表型分析技术、高光谱成像技术、红外热成像技术、光合作用与植物生理生态研究监测、土壤呼吸与碳通量研究监测、动物呼吸代谢测量、水质分析与藻类研究监测、CoreScanner样芯密度CT与元素分析技术、LIBS元素分析技术、无人机生态遥感技术等生态仪器技术及其系统方案集成有着丰富的经验,成为我国农业、林业、地球科学、生态环境研究等领域科技进步的重要研究技术支持力量。由公司研制生产的EcoDrone®无人机遥感平台、SoilTron®多功能小型蒸渗仪技术、SoilBox®土壤呼吸测量技术、PhenoPlot®轻便型作物表型分析系统、SCG-N土壤剖面CO2/O2梯度监测系统、植物生理生态监测技术、动物能量代谢测量技术等,在中科院修购项目、*学科群项目、CERN网络(生态系统监测网络)等项目中发挥重要作用。


   “工欲善其事,必先利其器”,易科泰公司将秉承“利其器,善其事”的经营理念,为国内生态-农业-健康研究与发展提供优秀的技术方案和服务。


欢迎关注北京易科泰微信公众号







详细信息

前言

精准农业是近年来农业科学研究的热点领域,也是当今世界农业发展的新潮流。研究人员希望通过精准农业技术体系的使用降低生产成本, 提高和稳定农产品产量和质量, 增加经济收入, 减少环境污染。

 

土壤中的盐分、水分、有机质含量、土壤压实度、质地结构等,均不同程度影响土壤电导率变化。通过测定土壤电导率,可为分析产量、评价土壤生产能力、制定精准施肥处方提供重要依据。传统的样方抽样调查不仅费时费力,还由于抽样密度过低不能真实反应地块土壤特性的时空变化,对于大尺度调查而言与机动车辆相结合的拖曳式土壤电导率测量系统无疑是优秀的选择。

 

基于以上信息,美国VERIS公司于1997年推出了商业化大面积土壤电导率(EC)勘查系统,2006年推出VIS-NIR双波段土壤有机质光谱传感器(OM),2016年推出iSCAN 多参数土壤理化性质测绘系统——该系统既可以由拖拉机或皮卡进行拖曳作业(需选配支架),又可安装在播种机等农机具上——在耕种作业的同时完成对农用地的勘查,灵活而便捷;随后推出附加土壤温度和湿度传感器的升级版iSCAN+系统(温度和湿度是种子发芽和出苗非常重要的影响因子)。

 

 

iSCAN 多参数土壤理化性质测绘系统通过实地原位测量土壤电导EC、OM值、温度和湿度值,利用GPS定位和数据处理测绘软件(收费数据处理服务),绘制出土壤理化性质分布图,全面分析反映土壤质地、盐碱度、持水能力、阳离子交换能力、根系深度等。适用于精准农业、土壤调查和碳汇农业(土壤碳储量估算)的研究示范及土地管理和土地利用规划等领域。

 

2017-2018年VERIS公司在美国选取4个州共计15块土地利用iSCAN系统进行勘测,并与手持式设备数据进行比对,得到非常好的线性相关结果。

 

 

上图为堪萨斯州40公顷地块勘查地图

 

主要特点

  • iSCAN可同时测绘土壤EC值、OM值,iSCAN+则多了土壤表层温度和湿度值
  • 原野现场测绘:随着机载系统在原野前行,即时获取电导及地理坐标(经纬度),每公顷可以测量120-240个样点数据
  • 直接接触法测量EC(Electrical Conductivity),测量基本不受周边电磁影响,也不需要校准,反映土壤质地、盐度特性
  • VIS-NIR双波段光谱传感器,可经由Veris数据处理中心进行数据处理提供土壤有机质OM(Organic Matter)值,反映土壤氮矿化、土壤水渗透、根系生长以及土壤持水能力

  

上图为经由VERIS数据中心处理后得到的地图

 

技术指标

  • OpticMapper双波段VIS-NIR传感器,原位测绘植物枯落物下层土壤表层光谱反射
  • 可见光波长:660nm;近红外波长:940nm;光源:LED
  • 光谱检测器:5.76mm光敏二极管
  • 除通过双波段VIS-NIR光谱传感器高密度原位测绘分析土壤OM值及其分布图外,可一次同时测量绘制EC,iSCAN+可附加土壤温度和湿度传感器,并可实时记录显示测量数据和分布图
  • Garmin GPS 15X:差分GPS定位精度,优于3米
  • 电子器件:NMEA 4X密封,高级防水接口
  • 数采:80 pin PIC 微处理器,1Hz采集率,背光显示器,电源12VDC,5A
  • 测绘软件SoilViewer:即时显示EC值及光谱反射,并将地理位置信息(经纬度)及测量值下载到计算机上并自动制作二维分布图(光谱反射需经由Veris数据处理中心进行处理分析形成SOM值)
  • EC测绘,可形成0-60cm的表层土壤电导测绘图
  • OM测量深度:38-76mm
  • 长度:农机版145cm;拖曳版259cm
  • 宽度:农机版31cm; 拖曳版127cm
  • 高度:110cm
  • 重量:147 kg
  • 测量速度:可达24km/hr
  • 工作温度:-20-70°C

软件界面

 

 

产地

美国

选配技术方案

  • 可选配高光谱成像以评估土壤微生物呼吸作用
  • 可选配红外热成像研究土壤水分、温度变化对呼吸影响
  • 可选配ECODRONE®无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究

部分参考文献

  • Adamchuk, V.I., J.W. Hummel, M.T. Morgan, S.K. Upadhyaya. 2004. On-the-go soil sensors for precision agriculture. Comput. Electron. Agric. 44:71–91.
  • Christy, C.D. 2008. Real-Time Measurement of Soil Attributes Using On-the-go Near Infrared Reflectance Spectroscopy. Computers and Electronics in Agriculture. 61:1. pp.10-19
  • Kitchen, N.R., S.T. Drummond, E.D. Lund, K.A. Sudduth, G.W. Buchleiter. 2003. Soil electrical conductivity and other soil and landscape properties related to yield for three contrasting soil and crop systems. Agron. J. 95:483–495.
  • Kweon, G., E.D. Lund, and C.R. Maxton. 2013. Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors. Geoderma 199:80–89.
  • Lund, E.D. 2008. Soil electrical conductivity. p.137-146. In: S. Logsdon et al. (ed.) Soil Science Step by Step Field Analysis. SSSA, Madison, WI.
  • Lund, E.D., C.R. Maxton, T.J. Lund. 2015. Assuring data quality and providing actionable maps using a multi-sensor system. Proceedings of Global Workshop on Proximal Soil Sensing. Hangzhou China. 266-278.
  • Eric Lund, Chase Maxton. 2019. Comparing Organic Matter Estimations Using Two Farm Implement Mounted Proximal Sensing Technologies. 5TH GLOBAL WORKSHOP ON PROXIMAL SOIL SENSING. P35-40.
  • José Paulo Molin, Tiago Rodrigues Tavares. 2019. SENSOR SYSTEMS FOR MAPPING SOIL FERTILITY ATTRIBUTES: CHALLENGES, ADVANCES, AND PERSPECTIVES IN BRAZILIAN TROPICAL SOILS. Eng. Agríc. vol.39.

 

相关技术文章

同类产品推荐

相关分类导航

产品参数

产地类别 进口
价格区间 面议
应用领域 环保,生物产业,农业,地矿
企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :