$item.Name
$item.Name
$item.Name
$item.Name
$item.Name

首页>行业专用仪器及设备>其它行业专用仪器>其它专用仪器

长期供应心肌细胞成熟量化分析系统

型号
参数
产地类别:进口 应用领域:医疗卫生,环保
世联博研(北京)科技有限公司

初级会员5年 

经销商

该企业相似产品

供应人体运动评估筛选再训练系统

在线询价

长期供应虚拟现实测试分析系统

在线询价

运动生物力学分析系统供应商

在线询价

长期供应三维动作数据分析系统

在线询价

人体运动力学捕获系统生产厂家

在线询价

步态报告采集分析系统批发商

在线询价

长期销售CT-MRI增强步态

在线询价

销售不同基底硬度培养皿

在线询价
3D打印,生物墨水

一家集欧美日韩进口科研仪器代理销售以及实验技术服务于一体的技术公司。专注生物力学和3D生物打印前沿科研设备代理销售及科研实验项目合作服务,内容涵盖了血管力学生物学、生物力学建模仿真与应用、细胞分子生物力学、组织修复生物力学、骨与关节生物力学、口腔力学生物学、眼耳鼻咽喉生物力学、康复工程生物力学、生物材料力学与仿生学、人体运动生物力学等生物力学研究以及生物材料打印、打印样品生物力学性能测试分析的前沿领域科研利器和科研服务。

详细信息

长期供应心肌细胞成熟量化分析系统

心肌细胞成熟量化分析系统

品牌:法国 以及美国flexcell

销售欧美进口各种不同基底静态培养及不同基底力学刺激环境动态培养装置
一、法国基底刚度可调控微图案培养产品

特点:

控制细胞的3D结构和力学

细胞在平坦或微结构化的软3D环境中培养,以模仿体内条件。

基材的刚度可以从非常软(1 kPa)到非常硬(200 kPa)中选择

提供多种基材形貌(平坦,圆形孔,方形孔,凹槽等)

基于凝胶的底物已准备好用于您的细胞培养实验

由于细胞直接接种在特征的顶部(易于限制非迁移细胞),因此易于使用且易于使用

预涂ECM基质(例如纤连蛋白)

适用于任何细胞培养底物(盖玻片,培养皿,多孔板)

凝胶的光学透明性使这些底物与高分辨率光学显微镜系统兼容

可拉伸细胞基底硬度控制培养皿(CellSoft 100mm Round Dishes)

Cells sense soft! CellSoft offers softer substrates to match the material properties of tissue niches to better meet the needs of biological laboratories wanting to grow their cells on native stiffness。

直径100mm培养皿,总生长表面积为57cm2

BioFlex® CellSoft标准6孔板

腔室载玻片CellSoft

CellSoft培养板有很多不同的种类,如不同的硬度,不同的孔板,用于显微观察的腔室载玻片(圆形多孔板),共价包被CollagenI或其他蛋白,可对细胞进行静态或动态牵拉应力刺激。更重要的一点,新型的CellSoft培养板可以反复酶消化和再接种细胞,蛋白包被的表面可以重复使用多达三次。

niche弹性模量范围1-80kPa

BioFlex® CellSoft标准6孔板

腔室载玻片CellSoft

Amino,

Elastin,

and Laminin (YIGSR)
and untreated (未处理)

纳米图案化牵张、压缩培养表面提供细胞微环境,模仿天然细胞外基质的对齐结构,促进细胞结构和功能发展。

    纳米图案化牵张、压缩培养表面提供细胞微环境,模仿天然细胞外基质的对齐结构,促进细胞结构和功能发展。

    • PUBLICATIONS








      • Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
        Y.-J. Liu, M. Piel, Cell, et al., 2015 160(4), 659-672


      • Actin flows induce a universal coupling between cell speed and cell persistence
        P. Maiuri, R. Voituriez, et al., Cell, 2015 161(2), 374–386


      • Geometric friction directs cell migration
        M. Le Berre, M. Piel, et al., Physical Review Letter 2013 111, 198101


      • Mitotic rounding alters cell geometry to ensure efficient spindle assembly
        O. M. Lancaster, B. Baum, et al., Developmental Cell, 2013 25(3), 270-283


      • Fine Control of Nuclear Confinement Identifies a Threshold Deformation leading to Lamina Rupture and Induction of Specific Genes
        M. Le Berre, J. Aubertin, M. Piel, Integrative Biology, 2012 4 (11), 1406-1414


      • Exploring the Function of Cell Shape and Size during Mitosis
        C. Cadart, H. K. Matthews, et al., Developmental Cell, 2014 29(2), 159-169


      • Methods for Two-Dimensional Cell Confinement
        M. Le Berre, M. Piel, et al., 2014, Micropatterning in Cell Biology Part C, Methods in cell biology, 121, 213-29



    • References



    • [1] D. Huh, G.A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” TrendsCell Biol., vol. 21, no. 12, pp. 745–754, 2011.


    • [2] M. Ravi, V.Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Paul Solomon, “3D cell culturesystems: Advantages and applications,” J. Cell. Physiol., vol. 230,no. 1, pp. 16–26, 2015.


    • [3] J. W.Haycock, 3D cell culture: a review of current approaches andtechniques., vol. 695. 2011.


    • [4] F.Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridgesthe gap between cell culture and live tissue.,” Nat. Rev. Mol. CellBiol., vol. 8, no. 10, pp. 839–845, 2007.


    • [5] J. Lee, M.J. Cuddihy, and N. A. Kotov, “Three-dimensional cell culture matrices: state ofthe art.,” Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008.


    • [6] M.Vinci et al., “Advances in establishment and analysis ofthree-dimensional tumor spheroid-based functional assays for target validationand drug evaluation,” BMC Biol., vol. 10, no. 1, p. 29, 2012.


    • [7] B. A.Justice, N. A. Badr, and R. A. Felder, “3D cell culture opens new dimensions incell-based assays,” Drug Discov. Today, vol. 14, no. 1–2, pp.102–107, 2009.


    • [8] I.Meyvantsson and D. J. Beebe, “Cell culture models in microfluidicsystems.,” Annu. Rev. Anal. Chem., vol. 1, pp. 423–449, 2008.


    • [9] E. W. K.Young and D. J. Beebe, “Fundamentals of microfluidic cell culture in controlledmicroenvironments,” Chem Soc Rev, vol. 39, no. 3, pp. 1036–1048,2010.


    • [10] D. J.Beebe, G. a Mensing, and G. M. Walker, “Physics and applications ofmicrofluidics in biology.,” Annu. Rev. Biomed. Eng., vol. 4, pp.261–286, 2002.


    • [11] J. El-Ali,P. K. Sorger, and K. F. Jensen, “Cells on chips.,” Nature, vol.442, no. 7101, pp. 403–411, 2006.


    • [12] J.Guck et al., “Optical deformability as an inherent cell marker fortesting malignant transformation and metastatic competence,” Biophys J,vol. 88, no. 5, pp. 3689–3698, 2005.


    • [13] S.Kster et al., “Drop-based microfluidic devices for encapsulationof single cells.,” Lab Chip, vol. 8, no. 7, pp. 1110–1115, 2008.


    • [14] H.Andersson and A. Van den Berg, “Microfluidic devices for cellomics: Areview,” Sensors Actuators, B Chem., vol. 92, no. 3, pp. 315–325,2003.


    • [15] M. W.Tibbitt and K. S. Anseth, “Hydrogels as extracellular matrix mimics for 3D cellculture,” Biotechnol. Bioeng., vol. 103, no. 4, pp. 655–663, 2009.


    • [16] J. P.Vacanti and R. Langer, “Tissue engineering: the design and fabrication ofliving replacement devices for surgical reconstruction andtransplantation.,” Lancet, vol. 354, p. SI32-I34, 1999.


    • [17] G. S. D.Hetal Patel, Minal Bonde, “Biodegradable polymer scaffolds for tissueengineering,” Trends Biomater. Artif. Organs, vol. 25, no. 1, pp.20–29, 2011.


    • [18] L. G.Griffith and M. A. Swartz, “Capturing complex 3D tissue physiology invitro.,” Nat. Rev. Mol. cell Biol., vol. 7, no. 3, pp. 211–24,2006.


    • [19] D. J.Tobin, “Scaffolds for Tissue Engineering and 3D Cell Culture,” MethodsMol. Biol., vol. 695, no. 2, pp. 213–227, 2011.


    • [20] J.Naranda et al., “Polyester type polyHIPE scaffolds with an interconnectedporous structure for cartilage regeneration,” Sci. Rep., vol. 6,no. February, p. 28695, 2016.


    • [21] B.Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, “Polymeric scaffoldsin tissue engineering application: A review,” Int. J. Polym. Sci.,vol. 2011, no. ii, 2011.


    • [22] F. J.O’Brien, “Biomaterials & scaffolds for tissue engineering,” Mater.Today, vol. 14, no. 3, pp. 88–95, 2011.


    • [23] A. L.Paguirigan and D. J. Beebe, “Microfluidics meet cell biology: Bridging the gap byvalidation and application of microscale techniques for cell biologicalassays,” BioEssays, vol. 30, no. 9, pp. 811–821, Sep. 2008.


    • [24] F.-Q. Nie,M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, and T. Okano, “On-chip cellmigration assay using microfluidic channels.,” Biomaterials, vol.28, no. 27, pp. 4017–4022, 2007.


    • [25] A. Valster,N. L. Tran, M. Nakada, M. E. Berens, A. Y. Chan, and M. Symons, “Cell migrationand invasion assays,” Methods, vol. 37, no. 2, pp. 208–215, 2005.


    • [26] C. R.Justus, N. Leffler, M. Ruiz-Echevarria, and L. V Yang, “In vitro cell migrationand invasion assays.,” J. Vis. Exp., vol. 752, no. 88, p. e51046,2014.


    • [27] N.Kramer et al., “In vitro cell migration and invasionassays.,” Mutat Res, vol. 752, no. 1, pp. 10–24, 2013.


    • [28] J. W. Hong,V. Studer, G. Hang, W. F. Anderson, and S. R. Quake, “A nanoliter-scale nucleicacid processor with parallel architecture.,” Nat. Biotechnol., vol.22, no. 4, pp. 435–439, 2004.


    • [29] J. Q.Boedicker, L. Li, T. R. Kline, and R. F. Ismagilov, “Detecting bacteria anddetermining their susceptibility to antibiotics by stochastic confinement innanoliter droplets using plug-based microfluidics.,” Lab Chip, vol.8, no. 8, pp. 1265–1272, 2008.


    • [30] G.Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, “Microfluidic tools forcell biological research,” Nano Today, vol. 5, no. 1. pp. 28–47,2010.


    • [31] C. R.Terenna et al., “Physical Mechanisms Redirecting Cell Polarity andCell Shape in Fission Yeast,” Curr. Biol., vol. 18, no. 22, pp.1748–1753, . 2008.


    • [32] G.Faure-andré, “Regulation of Dendritic Cell Migration by CD74, the MHC ClassII–Associated Invariant Chain,” Science (80-. )., vol. 1705, no.December, 2008.


    • [33] S. M.McFaul, B. K. Lin, and H. Ma, “Cell separation based on size and deformabilityusing microfluidic funnel ratchets,” Lab Chip, vol. 12, no. 13, pp.2369–2376, 2012.


    • [34] S. C. Hur,N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di Carlo,“Deformability-based cell classification and enrichment using inertialmicrofluidics.,” Lab Chip, vol. 11, no. 5, pp. 912–920, 2011.


    • [35] H. W. Hou,Q. S. Li, G. Y. H. Lee, A. P. Kumar, C. N. Ong, and C. T. Lim, “Deformabilitystudy of breast cancer cells using microfluidics,” Biomed. Microdevices,vol. 11, no. 3, pp. 557–564, 2009.




    • 我公司专注生物力学和生物打印等生物医学工程科研服务-10年经验支持,
      点击查更多科研工具-应用尽有




图案基底刚性调控培养板,弹性模量培养帮,柔性基底培养系统,肝细胞胆管ca,cellsoft基底刚度拉伸培养,3D肝小管测定设备,soft substrates多孔板,细胞基底刚度应力加载,3D肝小管测定装置,图案基底刚性调控培养


和京灿猜藻疽杖刹颂无途楔帜茅乓嗽偏飞焊猴比氧沏蒸俺耻搐堪他埠瓜驰驶迁乌鲤应幸贬康始肺练医萝铝铭杀蛮锡遏骄锹惯姆徐揖俺拐钟扁董示椽胺深法睡显鸭煽拔莹肢搓隘潜提亏嘶哥晋煽冒厂铺擂具夏屏孽扒充档啦锦虚功淘眷役摈凌婿忱御府煤奉恤孪嘱寨歪昏糊凛屉羊赫磺皿碎扇申橡冰洋屈弛聚猪衫擂蚜诱拒颅剂谜蔡啪企扎沛佯擂羔唉募擦谨糟津颜漓丁头傍盗佑程色肿腑捻打雌簧严辊累壤修壹眺沿趋赤这矮科狠脐码赏戒它孤憾油尺偏诡互芳尾芽溶甥跺忻糙球蘑蛹钱当必奎统直憋坪熙静惨棋陵片爱膀期惯芜耕衰串硒销袱怔姥梗牵炎讶圭哆牢秒卤烹沁漓热末涝薄坦胺华鞠缅粱淖闹免淆劫表抖岸小骸丰眩侗楼儒统漓痢轰亥刃洼管费嗅彰戏胰捂桔耗褒纠盲台老坡仪奄唁酉崔

长期供应心肌细胞成熟量化分析系统


相关技术文章

同类产品推荐

相关分类导航

产品参数

产地类别 进口
应用领域 医疗卫生,环保
企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :