起订量:
颅内微量给药导管
中级会员第2年
生产厂家上海玉研科学仪器有限公司是一家专业为生物、医学、药物研发等科研领域提供科学仪器和技术服务的公司。我们着力引进和开发应用成熟、性能先进的实验设备和实验方法,为科学研究和实验室建设提供有效、合理的解决方案。
玉研仪器专注于生理、药理、毒理等动物实验和研究的相关领域,为客户提供动物麻醉与辅助呼吸、生理信号检测与记录、动物给药与暴露染毒、呼吸功能测量与肺功能研究、代谢与缺血缺氧研究、疼痛与炎症研究、小动物行为学研究、神经科学研究、小动物活体成像、生化检验、动物手术与辅助设备、动物手术器械等多方面的科学仪器产品和定制化服务。
玉研仪器致力于打造动物科研仪器领域的百科全书!
经营理念:诚信经营、实干兴邦、积极进取、回报社会
服务理念:客户至上、主动服务、快速响应、解决问题
我们的使命:提供优质产品和高效服务,助力科研,成就科研
脑室微量给药导管可固定在大鼠、小鼠的颅骨上,埋入脑部适当的深度,配合相应的PE给药导管、微量注射器或者使用,实现对大鼠、小鼠颅内的微量给药。
单套管颅内给药
整个套管由基座、注射内管、导管帽、锁紧螺帽组成:
单套管颅内给药植入脑室的示意图:
给药套管的详细构造及主要尺寸:
(长度单位:mm)
订购指南,需要确定以下几个尺寸:
D1:导管外径的尺寸;
L1:下探到脑室套管的长度(含颅骨和脑室)
L3:注射内管探出基座套管的长度;
L4:导管芯(也就是堵头)探出基座套管的长度;
单套管的型号,各个组成配件的货号和尺寸:
双套管颅内给药
适用于两种不同或相同的药物注射在两个不同的位置;
双套管的主要组成:
双套管颅内给药植入脑室的示意图:
双套管的详细构造及主要尺寸:
订购指南,需要确定以下几个尺寸:
D1:导管外径的尺寸;
L1:下探到脑室套管的长度(含颅骨和脑室)
P :两根导管的间距
L3:注射内管探出基座套管的长度;
L4:导管芯(也就是堵头)探出基座套管的长度;
双套管的型号,各个组成配件的货号和尺寸:
新生鼠适用型号:
小鼠、大鼠适用型:
大鼠适用型:
颅内微量注射实验,还需要用到以下相关的设备和工具:
脑立体定位仪、套管夹持器、、微量进样器、PE给药导管、固定螺丝等
脑立体定位仪,可根据需求有多种型号可供选择:大鼠适配型、小鼠适配型、单臂、双臂、数显式、电动式
套管夹持器
微量进样器
PE给药导管
牙科水泥
固定螺丝
小动物
参考文献:
[1] Wahis J, Baudon A, Althammer F, et al. Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents[J]. Nature neuroscience, 2021, 24(4): 529-541.
[2] Zhu Z, Ng D W H, Park H S, et al. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies[J]. Nature Reviews Materials, 2021, 6(1): 27-47.
[3] Wang L, Gillis-Smith S, Peng Y, et al. The coding of valence and identity in the mammalian taste system[J]. Nature, 2018, 558(7708): 127-131.
[4] Terburg D, Scheggia D, Del Rio R T, et al. The basolateral amygdala is essential for rapid escape: a human and rodent study[J]. Cell, 2018, 175(3): 723-735. e16.
[5] Peng Y, Gillis-Smith S, Jin H, et al. Sweet and bitter taste in the brain of awake behaving animals[J]. Nature, 2015, 527(7579): 512-515.
[6] Tye K M, Mirzabekov J J, Warden M R, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour[J]. Nature, 2013, 493(7433): 537-541.
[7] Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, et al. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs[J]. Neuron, 2012, 76(4): 804-812.
[8] Pascoli V, Turiault M, Lüscher C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behaviour[J]. Nature, 2012, 481(7379): 71-75.
[9] Lemos J C, Wanat M J, Smith J S, et al. Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive[J]. Nature, 2012, 490(7420): 402-406.
[10] Goshen I, Brodsky M, Prakash R, et al. Dynamics of retrieval strategies for remote memories[J]. Cell, 2011, 147(3): 678-689.
[11] Aponte Y, Atasoy D, Sternson S M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training[J]. Nature neuroscience, 2011, 14(3): 351-355.
[12] Kravitz A V, Freeze B S, Parker P R L, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry[J]. Nature, 2010, 466(7306): 622-626.
[13] Amat J, Baratta M V, Paul E, et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus[J]. Nature neuroscience, 2005, 8(3): 365-371.
[14] Jasmin L, Rabkin S D, Granato A, et al. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex[J]. Nature, 2003, 424(6946): 316-320.
[15] Sunter D, Hewson A K, Lynam S, et al. Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat[J]. Neuroscience letters, 2001, 313(3): 145-148.
:,
:3007536035
yuyanbio
Mail:yuyanbio