起订量:
水质总氮分析光源
顶级会员第10年
生产厂家埃赛力达科技是一家的工业技术制造商,专注于提供具有市场驱动力的创新光子解决方案,满足我们OEM和终端客户对传感、检测、成像和照明的关键需求。埃赛力达服务于医学、生命科学、工业、半导体、智能建筑、国防和航空航天领域的众多应用,致力于促进客户在众多终端市场取得成功。我们的团队由7,500多名专业人员组成,他们在北美、欧洲和亚洲工作,为全球客户提供服务。
Noblelight特种光源是全球特种光源领域技术与市场的先驱者之一,产品波长覆盖从紫外线到红外线,适用于工业、科学及医疗应用,业务遍及欧洲、亚洲和美国。
主要产品有:PID灯、真空紫外灯、氙气闪光灯模块、氙闪灯、低压汞灯等。我们设计和制造的红外线、闪光和紫外辐射器、系统及解决方案,广泛地应用于工业制造、环保、医美、研发、分析测试技术等领域。
水质总氮分析光源
水质总氮分析光源简介
氘灯是使用受激发的氘气(D2)进行气体放电的光源,它可产生175 – 400 nm波长的紫外连续光谱及一些在此波长范围外的离散光谱线。因此作为紫外光源,氘灯广泛地应用于多种分析仪器和设备中,例如紫外分光光度计(UV-Vis)和高效液相色谱仪(HPLC)。
多年以来,为满足仪器制造商不断提升的技术要求,贺利氏研发了能达到极低监测限和较高灵敏度的氘灯。2010年至今,贺利氏陆续推出了ELP长寿命涂层氘灯和D2Plus高能量氘灯,进一步满足了仪器向更高发展的要求。
贺利氏工程师与仪器制造商密切配合,为满足使用和电源上的不同需求,提供一系列具有不同光窗、灯丝电压、光孔直径和法兰类型的氘灯。同时,通过我们的授权经销商网络,您可以方便地购买到大部分高效液相色谱仪(HPLC)和分光光度计(UV-Vis)所需要的替代氘灯。
应用
高效和超高效液相色谱仪(HPLC/UHPLC)
紫外分光光度计(UV-Vis)
原子吸收光谱仪(AAS)
高效毛细管电泳仪(HPCE)
薄层色谱仪(TLC)
污染检测器
日光模拟(MgF2窗口)
光离子化光源(MgF2窗口)
膜厚测量
半导体检测
荧光分光光度计
去除半导体晶圆静电
如何选择合适您的氘灯
高稳定长寿命氘灯
贺利氏长寿命氘灯的使用寿命长达2000小时,而且在整个使用过程中其输出均非常稳定,这是市场上其他长寿命灯所*的。因此,这类氘灯是高效液相色谱仪的*选择。
高输出ELP氘灯
贺利氏高输出ELP氘灯采用了新型的延长寿命(ELP)技术。这类氘灯寿命即将终止时,它们的光强仍然能够达到标准氘灯的两倍。
紫外玻璃光窗D2Plus氘灯
贺利氏为面向下一代仪器对稳定性的更高需求,更新了氘灯内部电极结构设计,以提高输出能量和降低噪声。紫外玻璃光窗可防止臭氧产生。
合成石英玻璃光窗D2Plus氘灯
贺利氏为面向下一代仪器对稳定性的更高需求,更新了氘灯内部电极结构设计,以提高输出能量和降低噪声。合成石英玻璃光窗可以更好地输出200 – 254 nm波长的能量。
透光型氘灯
透光型氘灯可以帮助系统开发者将氘灯和卤钨灯设计在同一光路上。仪器设计者可以通过这样的排列方法来简化结构和降低成本,例如取消反光镜和步进电机等。
真空紫外(VUV)氘灯
带有合成石英光窗或MgF2光窗的真空紫外氘灯可透射出波长低至160 nm或115nm的真空紫外线(VUV)。200W的真空紫外氘灯为水冷型,其辐射通量为30W真空紫外氘灯的4 – 5倍。
您还可以选择不同的氘灯光孔直径、灯丝电压以及不同的法兰和插头设计,请贺利氏销售工程师为您作出*选择。
特性
氘灯的点亮
预热
为保证灯丝预热后放出足够的活性电子,从而在高压启辉时形成电流回路,需要以10瓦的功率预热10秒钟。如果预热不足,会严重降低阴极的工作寿命,在这种情况下,阳极达不到稳定工作的温度,内部压降将异常升高,正离子击打阴极,导致阴极氧化物涂层的脱落,并降低工作寿命。
启辉
灯丝预热时释放的活性电子随着启辉电压的作用而加速通过光孔向阳极运动。启辉电压的额定值通常是350 V,但不仅启辉电压的大小很重要,其作用速度以及维持电弧通过启动至跃迁所需的电流也非常关键。贺利氏电源提供10微秒的启辉时间和约600 V的启辉电压,该电压会随着氘灯老化而增加。
工作
氘灯工作电流规定为300 mA基于两个因素制约:在300 mA直流以上,副动态阻抗降低;在高度稳定的恒定电流下,工作稳定性将提高。
氘灯工作电压通常在60 – 90 V范围内,并且会受到环境条件的很大影响。外壳温度改变1℃将引起工作电压变化0.04 V,因此,灯室环境温度在仪器设计过程中非常重要。
氘灯输出稳定性
噪声—短期的强度变化
氘灯灯丝上的氧化物涂层是造成氘灯噪声的关键因素。由于阳极退化、气体杂质或长期使用,阴极表面无法保持稳定的放电,而噪声是由阴极表面上的这种放电电弧运动引起的。贺利氏不断研究不同氧化物阴极成分,它们的添加剂以及它们与不同钨丝设计的相互作用,以期进一步降低氘灯噪声,延长其使用寿命。除了基本的氘灯噪声,仪器自身的多种光学和电器因素也会影响系统噪声。
漂移—长期的强度变化
氘灯漂移主要体现在光输出的逐步降低,这是由于氘灯的自然老化,该参数优于每小时 /- 0.5% 。其原因是阴极的活性电子放电特性的变化,气体压力的变化和光窗的污染。新的氘灯的确会有显著的漂移,但是该情况已经在以推荐电流进行的老练过程中消除。但是,仪器自身也会存在显著漂移,这来自于氘灯的温度控制(灯室),光学元件的老化以及工作电流的稳定性不足,或者石英氘灯的臭氧浓度变化。
相同的氘灯会显示出不同的漂移值,这取决于氘灯用于哪种光学系统中。在单光束仪器中,漂移通常显著高于双光束仪器,变化范围1X10-3 AU/h至1X10-4 AU/h。氘灯在仪器内进行长时间预热可以获得良好的稳定性。虽然氘灯的内部零件在10 -15 min后达到热平衡,但是我们仍推荐再等待2 – 3小时,以达到仪器制造商的漂移值。
氘灯的光强漂移仅显示出微弱的温度依赖性。在250 nm时其典型的温度系数<0.4 mAU/K。
氘灯寿命
使用寿命—氘灯输出的下降
氘灯使用寿命结束是指在一定波长(通常是230 nm)处,光强(辐射功率)下降至≤50%的初始光强。
稳定性寿命—氘灯输出稳定性变差
如果光输出的波动超过规定的 /- 0.005% P-P(DX或XD系列)或 /- 0.05% P-P(DO、DS或SD系列),则氘灯的稳定性寿命结束。
DX或XD系列的规定寿命为2000小时;DO、DS或SD系列的规定寿命为1000小时。通常启动已经使用较长时间的氘灯是不会产生问题的,但是如果有些仪器未严格规定电源应对经氘灯增加启辉电压,这会限制氘灯的使用寿命。
D2Plus氘灯
简介
贺利氏研发的下一代氘灯D2Plus引发了革命性的改变,仪器生产商们可以将其设计进他们的系统中,从而获得更好的稳定性和更精确的分析结果。相比于传统氘灯,D2Plus可以额外提供50%的厨师光强,且其剩余能量超出传统氘灯2倍以上。客户们将从更快更好的精确测量中获益——即便是在灯的寿命终止时。
特点
提高了寿命内的光强保持能力,从而减少了仪器的再校准
更好的信噪比
更短的采样时间
更好的稳定性表现
更精准的分析结果
更高的性价比
zui低的拥有成本
zui少2000小时的高度稳定性
可选0.5 mm或1.0mm孔径
紫外玻璃外壳和ELP涂层技术的石英外壳
石英外壳D2Plus氘灯
紫外玻璃外壳D2Plus氘灯
D2Plus氘灯的寿命表现