$item.Name

首页>测量/计量仪器>天平衡器>其它称量设备

水样荧光仪Water-PAM

型号
上海泽泉科技股份有限公司

中级会员16年 

代理商

该企业相似产品

藻类分析

在线询价

蜂巢矩阵叶绿素荧光成像系统

在线询价

叶绿素荧光仪

在线询价

高级研究型藻类荧光仪XE-PAM

在线询价

基础型调制荧光仪 Junior-PAM

在线询价

超微光纤荧光仪Microfiber-PAM

在线询价

显微调制荧光仪Microscopy-PAM

在线询价

水体毒性荧光仪ToxY-PAM

在线询价
CI-340手持式光合仪;CI-203手持式激光叶面积仪;CI-202叶面积仪;CI-110冠层分析仪;CI-600根系生长监测仪

上海泽泉科技股份有限公司(Zealquest Scientific Technology Co., Ltd.)成立于2000年,是一家专注于科研设备研发、系统集成、技术推广、咨询、销售和科研服务的科技型技术企业。公司注册资金3500万元人民币,具有进出口贸易权。

公司总部位于上海浦西,在北京设有分公司,在广州、成都、武汉分别设有代表处。公司全体员工均具有高等教育背景,其中80%的技术研发、技术支持和销售人员具有硕士和博士学位,参加过很多国家和省部级重大科研项目,具有丰富的科研工作经验。公司曾获得上海市普陀区科技小巨人企业、上海市科技型企业中华全国工商联合会/上海市工商联合会/上海市商会会员单位,曾是上海市专业技术服务平台——生理生态测量与分析平台的依托单位和上海市高新技术成果转化项目承担单位。2012年公司通过了ISO9001质量管理体系认证,获得AAA信用资质等级认定,获得普陀区科技小巨人企业认定,成为上海市研发公共服务平台加盟单位和“上海市工商联合会”/“上海市商会”会员单位 。2015年获得“专精特新”中小企业认定。2016年成为“上海市生态学学会常务理事单位”和“上海种子行业协会”会员单位,2017年成为“上海市农业工程学会理事单位”。
上海泽泉科技股份有限公司非常注重自主知识产权的申报和保护,截止2021年底已获得发明6项、实用新型53项及软件著作9项,国内外科研期刊发表科研论文20多篇。公司还参与承担了国家自然科学基金重点项目(41030529)和水利部948项目(200907)。
公司秉承推进中国生态环境改善、农业兴国的理念,服务涉及植物表型组学和基因组学、植物生理生态、土壤、环境气象、水文水利、氢农业等领域的科研和技术支持,服务对象主要为各级科研单位、高校和政府机构。公司先后为科技部“973”项目和“863”项目、国家科技重大专项、国家科技支撑计划、国家“211”工程和“985”工程、中科院知识创新工程、农业部“948”项目、水利部“948”项目等提供技术咨询、仪器设备、系统解决方案和系统集成服务,为项目的顺利完成提供了有力支持。
多年来,公司积极参与相关领域的学术会议,并定期举办相关仪器设备的技术讲座和培训班,在科研和监测领域产生了积极的反响,获得了良好的口碑。截止2021年底,泽泉科技举办公开技术讲座200多场,参会人员超过10000人次;同时在国内外应邀参加学术会议和展会200多次,与相关领域的客户有非常密切的交流合作。
2014年2月,上海泽泉科技股份有限公司在上海浦东孙桥现代农业园区投资成立了上海乾菲诺农业科技有限公司,建设了AgriPhenoTM “高通量植物基因型-表型-育种服务平台”,为植物科研和育种单位提供全面的样品收集和栽培,实验设计和项目合作,以及表型数据与生物信息学分析综合服务。平台成功主持了上海张江国家自主创新示范区专项发展资金重点项目“泽泉科技高通量植物基因型-表型-育种服务平台”。作为主持单位或合作单位参与了上海市农委和科委的30多项政府科研服务项目以及商业服务项目,如科技兴农种业发展项目“农作物分子育种的技术创新研究”和“青菜高通量表型图谱标准的建立及主要性状分析”、科技兴农重点攻关项目“基于图像分析及三维建模技术的黄瓜长势快速评价方法研究”、 “兰科观赏花卉分子育种技术研究与产业化应用”等。为了紧追世界科技发展水平,开启院企合作建立研究型平台的创新尝试,上海泽泉科技股份有限公司与上海市农业科学院,结合双方各自的优势,于2021年5月在上海农业科学院庄行试验站联合成立“上海市农业科学院庄行综合试验站泽泉科技植物表型技术研究平台”,AgriPhenoTM平台从上海浦东孙桥现代农业园区整体迁出,并入新建的植物表型技术研究平台。目前平台除拥有无人机表型平台、温室型和实验室型高通量表型分析系统外,还拥有现代化温室、生物学实验室、植物生理生态测量设备、农业气象测量系统和专业的数据库平台,已经具备了对植物、动物基因测序与植物表型研究的各类条件。可以承担高通量DNA提取、基因测序服务、分子辅助育种、植物生理生态研究等科研实验任务。同时可以为植物功能基因组、农业育种家提供高通量植物基因型测试、高通量植物表型测试和植物基因型-表型生物信息学数据分析等开放式服务。
公司积极响应上海市政府“崇明生态岛建设”的发展方向,2016年12月泽泉科技在崇明城桥镇投资成立了子公司—上海金盏农业发展有限公司,扩展建设田间智能化育种服务平台,以及智能化农业物联网“农业云平台”,以生态乡村、能源乡村的发展模式,展示并实施公司自主研发的先进的农业楼宇基础设施、温室与田间的智能化“多因子”调控的栽培管理模式;拟建成拥有田间型高通量表型分析系统的“AgriPheno智能化育种服务平台”,提高上海种业商业化育种的进程,并服务于全国和国外相关育种科研单位。
展望未来,上海泽泉科技股份有限公司希望在社会多方资源的支持和关怀下,不断提升自己,为社会提供更多、更优秀的产品和服务!


详细信息

schreiber教授因发明pam系列调制叶绿素荧光仪而获得首届光合作用协会(ispr)创新奖

利用调制叶绿素荧光技术,测量野外自然水体或培养的微藻样品的光合作用(叶绿素荧光诱导加淬灭分析、光响应曲线等),也可测量叶绿素含量,是进行野外光合作用研究的良好工具。除了测浮游植物外,可扩展探头测量附着藻类或大型藻类。除了取水样到样品杯中测量外,可扩展探头进行水下原位、连续测量,特别适合于连续监测海洋、湖泊、水库、河流等水体的叶绿素含量以及光合活性。

功能
1)可单机操作,可连接电脑操作
2)可测叶绿素荧光诱导曲线并进行淬灭分析
3)可测光响应曲线和快速光曲线(rlc)
4)可测量水样的量子产量(光合效率)和相对电子传递速率(光合速率)
5)51个内置模式菜单,方便参数设置和标准测量
6)灵敏度高,检测限为0.1 μg l-1 chl
7)三种配置:
系统i用于浮游植物研究;系统ii用于附着藻类和大型藻类研究;系统iii用于连续监测水体光合作用
8)主机为通用控制单元pam-control,可扩展为microscopy-pam和microfiber-pam

通用控制单元pam-control


测量参数
fo、fm、fv/fm、f、fm"、δf/fm"、fo"、qp、qn、npq、retr和par等。

应用领域
水生生物学、水域生态学、海洋学、湖沼学、微藻生理学、微藻抗逆性、水质管理、饮用水源监测、极地藻类研究、环境科学、生态毒理学等。


系统组成

系统i
浮游植物版

系统ii
附着藻类/大型藻类版

系统iii
连续监测版

野外现场自然水体的光合作用检测、叶绿素含量测定;室内培养的微藻样品的生理特性研究等。野外现场附着藻类(如底泥中的藻类)、大型海藻的光合活性测量;室内大型海藻生理特性研究。野外现场水体光合活性、叶绿素含量的连续测定,包括垂直梯度分布和横向分布。
可选附件1:搅拌器,可置于系统i的上部对水样进行搅拌,带内置电池

可选附件2:球状微型光量子探头,可放入系统i的样品杯中测量par,也可放入水面下测量水体光场


技术参数
测量光:红色led,650 nm,zui大光强 <1 μmol m-2 s-1
光化光:红色led,660 nm,zui大光强2000 μmol m-2 s-1 par
饱和脉冲:红色led,660 nm,光强4000 μmol m-2 s-1 par
远红光:led,730 nm
信号检测:光电倍增管,检测波长 > 710 nm,选择性锁相放大器(设计),过载保护功能

部分文献

[1] drath m, kloft n, batschauer a, marin k, novak j, forchhammer k. ammonia triggers photodamage of photosystem ii in the cyanobacterium synechocystis sp. strain pcc 6803. plant physiology 2008:in press.
[2] gao k, li p, watanabe t, helbling ew. combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and dna of arthrospira (spirulina) platensis (cyanophyta). journal of phycology 2008:in press.
[3] hill r, ralph pj. impact of bleaching stress on the function of the oxygen evolving complex of zooxanthellae from scleractinian corals. journal of phycology 2008;44 (2):299-310.
[4] mojaat m, foucault a, pruvost j, legrand j. optimal se-lection of organic solvents for biocompatible extraction of β-carotene from dunaliella salina journal of biotechnology 2008;133 (4):433-41.
[5] bailey s, melis a, mackey krm, cardol p, finazzi g, dijken gv, berge gm, arrigo k, shrager j, grossman a. alternative photosynthetic electron flow to oxygen in marine synechococcus biochimica et biophysica acta 2007;1777 (3):269-76.
[6] ekelund nga, aronsson ka. changes in chlorophyll a fluorescence in euglena gracilis and chlamydomonas reinhardtii after exposure to wood-ash environmental and experimental botany 2007;59 (1):92-8.
[7] geoffroy l, gilbin r, simon o, floriani m, adam c, pradines c, cournac l, garnier-laplace j. effect of selenate on growth and photosynthesis of chlamydomonas reinhardtii aquatic toxicology 2007;83 (2):149-58.
[8] hill r, ralph pj. post-bleaching viability of expelled zooxanthellae from the scleractinian coral pocillopora damicornis. marine ecology progress series 2007;352:137-44.
[9] kromkamp jc, perkins r, dijkman n, consalvey m, andres m, reid rp. resistance to burial of cyanobacteria in stromatolites. aquatic microbial ecology 2007;48 (2):123-30.
[10] kudela rm, ryan jp, blakely md, lane jq, peterson td. linking the physiology and ecology of cochlodinium to better understand harmful algal bloom events: a comparative approach harmful algae 2007;7 (3):278-92.
[11] leu e, falk-petersen s, hessen do. ultraviolet radiation negatively affects growth but not food quality of arctic diatoms. limnology and oceanography 2007;52 (2):787-97.
[12] mcminn a, ryan kg, ralph pj, pankowski a. spring sea ice photosynthesis, primary productivity and biomass distribution in eastern antarctica, 2002-2004 marine biology 2007;151 (3):985-95.
[13] perkins rg, kromkam jc, reid rp. importance of light and oxygen for photochemical reactivation in photosynthetic stromatolite communities after natural sand burial. marine ecology progress series 2007;349:23-32.
[14] ralph pj, ryan kg, martin a, fenton g. melting out of sea ice causes greater photosynthetic stress in algae than freezing in. journal of phycology 2007;43 (5):948-56.
[15] richter p, helbling w, streb c, häder d-p. par and uv effects on vertical migration and photosynthesis in euglena gracilis. photochemistry and photobiology 2007;83 (4):818-23.
[16] roleda my, zacher k, wulff a, hanelt d, wiencke c. photosynthetic performance, dna damage and repair in gametes of the endemic antarctic brown alga ascoseira mirabilis exposed to ultraviolet radiation. austral ecology 2007;32 (8):917-26.
[17] schmitt-jansen m, altenburger r. the use of pulse-amplitude modulated (pam) fluorescence-based methods to evaluate effects of herbicides in microalgal systems of different complexity toxicological and environmental chemistry 2007;89 (4):665-81.
[18] veldhuis mjw, timmermans kr. phytoplankton dynamics during an in situ iron enrichment experiment (eisenex) in the southern ocean: a comparative study of field and bottle incubation measurements. aquatic microbial ecology 2007;47 (2):191-208.
[19] wulff a, zacher k, hanelt d, al-handal a, wiencke c. uv radiation - a threat to antarctic benthic marine diatoms? antarctic science 2007;20:13-20.
[20] zacher k, roleda my, hanelt d, wiencke c. uv effects on photosynthesis and dna in propagules of three antarctic seaweeds (adenocystis utricularis, monostroma hariotii and porphyra endiviifolium) planta 2007;225 (6):1505-16.
[21] 梁英, 尹翠玲, 江新琴, 于云芝. 硅浓度对纤细角毛藻和三角褐指藻生长及叶绿素荧光特性的影响. 海洋水产研究 2007;28 (5):89-94.
[22] 尹翠玲, 梁英, 张秋丰. 磷浓度对球等鞭金藻3011和8701叶绿素荧光特性及生长的影响. 海洋湖沼通报 2007:88-95.
[23] cosgrove j, borowitzka m. applying pulse amplitude modulation (pam) fluorometry to microalgae suspensions: stirring potentially impacts fluorescence. photosynthesis research 2006;88 (3):343-50.
[24] leu e, færøvig pj, hessen do. uv effects on stoichiometry and pufas of selenastrum capricornutum and their consequences for the grazer daphnia magna. freshwater biology 2006;51 (12):2296-308.
[25] peers g, price nm. copper-containing plastocyanin used for electron transport by an oceanic diatom nature 2006;441:341-4.
[26] roleda my, hanelt d, wiencke c. exposure to ultraviolet radiation delays photosynthetic recovery in arctic kelp zoospores. photosynthesis research 2006;88 (3):311-22.
[27] roleda my, wiencke c, lüder2 uh. impact of ultraviolet radiation on cell structure, uv-absorbing compounds, photosynthesis, dna damage, and germination in zoospores of arctic saccorhiza dermatodea journal of experimental botany 2006;57 (14):3847-56.
[28] 梁英, 冯力霞, 尹翠玲, 曹春晖. 高温胁迫对三角褐指藻和纤细角毛藻叶绿素荧光动力学的影响. 中国海洋大学学报 2006;36 (3):427-33.
[29] 梁英, 冯力霞, 田传远, 尹翠玲. 盐胁迫对塔胞藻生长及叶绿素荧光动力学的影响. 中国海洋大学学报 2006;36 (5):726-32.
[30] 冉春秋, 张卫, 虞星炬, 金美芳, 邓麦村. 解偶联剂cccp对莱茵衣藻光照产氢过程的调控. 高等学校化学学报 2006;27 (1):62-6.
[31] barranguet c, veuger b, van beusekom sam, marvan p, sinke jj, admiraal w. divergent composition of algal-bacterial biofilms developing under various external factors. european journal of phycology 2005;40 (1):1-8.
[32] mcminn a, pankowski a, delfatti t. effect of hyperoxia on the growth and photosynthesis of polar sea ice microalgae. journal of phycology 2005;41 (4):732-41.
[33] mcminn a, hirawake t, hamaoka t, hattori h, fukuchi m. contribution of benthic microalgae to ice covered coastal ecosystems in northern hokkaido, japan. journal of the marine biological association of the uk 2005;85:283-9.
[34] mcminn a, sellah s, llah wawa, mohammad m, merican fms, omar wmw, samad f, cheah w, idris i, sim yk, wong ws, tan sh, yasin z. quantum yield of the marine benthic microflora of near-shore coastal penang, malaysia. marine and freshwater research 2005;56 (7):1047-53.
[35] ralph pj, mcminn a, ryan kg, ashworth c. short-term effect of temperature on the photokinetics of microalgae from the surface layers of antarctic pack ice. journal of phycology 2005;41 (4):763-9.
[36] serôdio j, vieira s, cruz s, barroso f. short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. marine biology 2005;146 (5):903-14.
[37] mcminn a, hegseth en. quantum yield and photosynthetic parameters of marine microalgae from the southern arctic ocean, svalbard. journal of the marine biological association of the united kingdom 2004;84:865-71.
[38] ryan kg, ralph p, mcminn a. acclimation of antarctic bottom-ice algal communities to lowered salinities during melting. polar biology 2004;27:679-86.
[39] jones rj, heyward aj. the effects of produced formation water (pfw) on coral and isolated symbiotic dinoflagellates of coral. marine and freshwater research 2003;54 (2):153-62.
[40] sauer jr, schreiber u, schmid r, völker u, forchhammer k. nitrogen starvation-induced chlorosis in synechococcus pcc 7942. low-level photosynthesis as a mechanism of long-term survival. plant physiology 2001;126:233-43.

相关技术文章

同类产品推荐

相关分类导航

产品参数

企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :