利用微流体系统、磁性纳米颗粒以及高内涵成像完成体外 3D 肿瘤实验
2022-10-20580近年来,利用生理学上更为精准的 3D 细胞模型进行研究和药物发现的需求一直在稳步增长。研究人员一直在建立和维护各种 3D 细胞模型,以研究更多的疾病和生理机制 [1,2]。现在已经有能力突破一些限制因素,实现通过更快,更简单的操作完成复杂实验,尤其是针对珍贵的,从患者身上分离的样本。细胞球和类器官的形成,处理,染色过程通常是繁复的操作过 程,容易造成样本的破坏或丢失。此外高内涵成像也具有一定的挑战性,因为类器官更倾向于生长在孔的边缘,或定位在孔内不同的位置和高度上。且在多孔板中进行药物处理和分析时,每个孔的读数是有限的。新技术正在快 速的发展以简化和促进流程的完善。我们使用微流体设备 Pu·MA System 3D MAG and 3D flowchips(Protein Fluidics),和磁性包被的 3D 细 胞模型完成自动化的实验流程 ( 图 1 )。3D 细胞模型用磁性纳米颗粒包 被NanoShuttle ™ [3],被转移到孔内并通过嵌入流体芯片的磁铁定位到孔中央。自动化的微流体系统可以实现培养基自动更换,化合物添加以及微组织的处理。然后使用 ImageXpress Micro Confocal High-Content Imaging System (Molecular Devices) 拍摄高分辨率的 3D 结构并使用先进的分析软件定量细胞球体和类器官的形态及化合物的影响。
自动延时成像评估血管生成
生物产业检测使用双发射荧光染料监测癌细胞系的线粒体膜电位
生物产业检测器官芯片模型中血管生成的3D 图像分析与表征
生物产业检测利用高内涵3D成像及分析,肺类器官可作为体外毒性评价的分析模型
生物产业检测利用近红外标记和先进的图像及数据分析提高Cell Painting 的可靠性
生物产业检测来源于诱导多功能干细胞分化的心肌细胞在毒性化学物作用下的表型特征
生物产业检测基于细胞绘画法的高内涵表型分析
生物产业检测温馨提示:
1.本网的解决方案仅供学习、研究之用,版权归属此方案的提供者,未经授权,不得转载、发行、汇编或网络传播等。
2.如您有上述相关需求,请务必先获得方案提供者的授权。
3.解决方案为企业发布,信息内容的真实性、准确性和合法性由上传企业负责,化工仪器网对此不承担任何保证责任。