乙烯废水工艺控制中成功关联BOD和TOC
2023-10-081692挑战
一家乙烯生产厂寻求改进废水处理工艺的性能和监测。来自生产设备的废水在提升站汇合之后,流进均质池(EQ池)。在废水进入“溶气气浮(DAF,Dissolved Air Floatation)”系统之前,操作人员向水中添加处理化学品,调整水的pH值。处理后的水被送到生物处理系统进一步处理,然后被澄清、排放。
工厂每天要在排放口取样,用生物化学需氧量(BOD,Biochemical Oxygen Demand)进行分析。BOD和水的其它测量数据用于合规测试,计算出工厂排放的有机物总量。然而工厂无法使用报告为“未检出(ND,Non-Detect)”结果的低BOD值。另一个难题是BOD分析要求5天的报告时间,这一时间滞后使BOD分析无法实际应用于处理工艺的监测和优化。
解决方案
工厂采用分析监测方案来优化水处理工艺,以减少有机物排放量。虽然BOD分析对时间的要求使得该分析法失去实际应用价值,但可以利用BOD和TOC之间的关系在每个取样点建立两者的相关性。用这些相关系数进行总有机碳(TOC,Total Organic Carbon)分析,报告近乎实时的监测数据,在几分钟内即可预测出“相关生化需氧量(BODC,Biochemical Oxygen Demand-Correlated)”数据。
在建立相关性时,需要有取样计划来定义样品采集和数据分析。在操作现场,工厂用InnovOx实验室型TOC分析仪来报告相关性的初始数据。当成功建立相关性后,工厂随时可以将分析模式转换为在线分析。
工厂选择3个取样点来决定过程操作,并比较TOC和BOD数据(见表1)。
由于BOD分析数据是非线性的,因此要求分别导出BOD和TOC样品在每个取样点的相关系数。
每天多次取样,能够提高相关性的准确度。在此次研究中,工厂监测3个测试点,在2周内共提取7份样品。
第一个取样点位于提升站之后和均质池之前,所取样品来自稳定的进水。测量数据如表2所列。
任何明显的异常值都被前后BOD的平均值所代替,从而将相关系数从0.675提高到0.923。对于废水来说,高于0.5的相关系数都可用。表2中的BODC值是用实测BOD和TOC值之间的关系计算出的BOD值。
进水的BOD和TOC的相关性非常可靠,因此可以用TOC来替代BOD(见图1)。
最终澄清池出水处的第2个取样点的测量结果显示,如果浓度过低,就无法确定BOD值(见表3)。
虽然用TOC分析法测得的碳量变化了8倍,但BOD的灵敏度仍达不到定量数据的要求。表3中的BOD数据显示,在7个样品中,有2个样品无法被定量,被报告为“未检出”。其它5个BOD样品之间的数据偏差在+/-4%以内,在统计上难以进行区分。出水的BOD只能用于进行合格/不合格测试。
深度处理池的BOD数据(见表4)均被报告为“未检出”,因此无法建立同TOC的相关性。尽管BOD被报告为“未检出”,但TOC数据仍是准确的、精确的、线性的。
结论
这家乙烯生产厂成功地用TOC分析法来监测废水处理工艺。他们得到的进水相关系数非常可靠,因此可以用近乎实时的TOC分析法代替常用的5日BOD测试法。
有机碳测量结果是最可信的废水排放数据。TOC分析法能够直接测量出水中的低ppm有机碳,因此是更可靠的监测和优化工具。操作人员可以根据实时数据对可能出现的问题做出快速反应、及时采取纠正措施。
使用总有机碳TOC分析监测混合冷却水的出口
环保检测SIEVERS*分析仪应用于微电子行业
电子/电气检测哥伦比亚制糖厂用总有机碳(TOC)分析法防止代价昂贵的产品泄漏
环保检测欧洲饲料加工厂对高温回收冷凝水进行有机物监测
环保检测食品生产商LITEHOUSE公司改用总有机碳TOC分析技术节省70万美元运营成本
环保检测直接饮用水回用示范厂通过有机物监测增强当地抗旱能力与效能
环保检测高纯蒸汽和高效电力生产的总有机碳TOC和硼的在线监测
能源/新能源检测温馨提示:
1.本网的解决方案仅供学习、研究之用,版权归属此方案的提供者,未经授权,不得转载、发行、汇编或网络传播等。
2.如您有上述相关需求,请务必先获得方案提供者的授权。
3.解决方案为企业发布,信息内容的真实性、准确性和合法性由上传企业负责,化工仪器网对此不承担任何保证责任。