开关稳压器设计的PCB布局布线
时间:2013-04-10 阅读:3892
开关稳压器设计的PCB布局布线
关键字:开关电源 开关稳压器 PCB布局 PWM
开关模式电源用于将个电压转换为另个电压。这种电源的效率通常很,因此,在许多应用中,它取代了线稳压器。
开关频率与开关转换
开关模式电源以的开关频率工作。开关频率既可以是固定的(例如在PWM型中),也可以根据某些因素而变化(例如在PFM或迟滞型中)。无论何种情况,开关模式电源的工作原理,都在于它有的开启时间Ton和的关闭时间Toff.图1显示了个5占空比的开关周期。这意味着,在完整周期T的5时间里,转换器中有某电流;在另外5时间里,转换器中有不同的电流。
当我们考虑系统噪声时,实际的开关频率(换言之,周期长度T)并不是很重要。如果它在系统的敏感信号频率范围内,开关频率或其谐波可能会影响系统。但般而言,开关频率并不是影响系统的zui大因素。
在开关模式电源中,真正重要的是开关转换的速度。在图1的下半部分,我们可以看到开关转换在时间标度上的放大图。在周期T为2us的时间标度上,对于500kHz PWM开关频率,转换看起来像是条垂直线,如图1的上半部分所示。但放大后,如图1的下半部分所示,我们可以看到,开关转换通常需要30到90ns的时间。
为什么良好的PCB布局布线重要?
每2.5cm PCB走线具有大约20nH的走线电感。确切的电感值取决于走线的厚度、宽度和几何形状,但根据经验,般取20nH/2.5cm切实可行。假设个降压稳压器提供的输出电流,我们将会看到电流从0A切换到.当开关电流很大且开关转换时间很短时,我们可以利用下面的公式,计算微小的走线电感会产生多大的电压偏移:
由此可见,2.5cm的走线电感就能产生相当大的电压偏移。这种偏移甚至常常导致开关模式电源失效。将输入电容放在离开关稳压器输入引脚几厘米的地方,通常就会导致开关电源不能工作。在布局布线不当的电路板上,如果开关电源仍能工作,它将产生大的电磁干扰(EMI)。
在上面的公式中,我们*能改变的参数是走线电感。我们可以使走线尽可能短,从而降低走线电感。较厚的铜线也降低电感。由于负载所需的功率固定,因此我们无法改变电流参数。对于转换时间而言,我们可以改变,但般不想改变。减慢转换时间可以降低产生的电压偏移,从而降低EMI,但是开关损耗却会提,我们将不得不以较低的开关频率并利用昂贵而庞大的电源器件工作。
找到交流电流走线
在开关模式电源的PCB布局布线中,zui重要的准则是以某种方式使交流走线尽可能短。如果能认真遵守这准则,良好的电路板布局布线可以说已经成功了8.为了找到这些在很短的时间(转换时间)内将电流从"满电流"变为"无电流"的交流走线,我们将原理图绘制了三次。如图2所示,它是个简单的降压型开关模式电源。在顶部的原理图中,我们用虚线画出了开启时间内电流的流动。在中间的原理图中,我们用虚线画出了关闭时间内电流的流动。底部的原理图特别值得注意。这里,我们画出了电流从开启时间变为关闭时间的走线。
图2底部原理图中的这些走线是交流走线,必须使其尽可能短,以降低寄生电感。
通过这种方法,我们可以轻松找到开关模式电源拓扑结构的交流电流走线。
在评估现有的电路板布局布线时,个好的办法是将其打印在纸上,并放上张透明的塑料板,然后用不同颜色的笔,画出开启时间和关闭时间内的电流流向及相应的交流走线。虽然我们倾向于认为,能够在头脑中完成这相对简单的工作,但在思维过程中,我们常常会犯些小错误,因此,强烈建议在纸上绘出走线。
实现良好的PCB布局布线
图2显示了降压稳压器的交流走线。必须注意,某些接地走线也是交流走线,同样需要保持尽可能短。此外,对于这些交流电流路径,建议不要使用过孔,因为过孔的电感也相当。对于这规则,有少的例外情况。如果交流路径不使用过孔,将实际导致比过孔本身大的走线电感,那么建议使用过孔。多个过孔并联优于使用单个过孔。
图3所示为采用ADI公司ADP2300降压稳压器的电路板的布局布线示例。我们检查下,图中的交流走线是否是按zui短的路径布设。图2用字母A、B、C表示了交流电流连接。
图3中的连接A是按照尽可能短的路径布设,因为C2的侧连接能够以zui短的走线连接到开关MOSFET(ADP2300的引脚5,即Vin引脚)。
连接B是引脚6(SW引脚)与二管D1的阴侧之间的走线。在图3中,我们同样看到该走线尽可能短,以降低走线电感。
连接C是二管D1的阳与C2的接地连接之间的走线。这两个器件的焊盘彼此相邻,具有zui低的走线电感。此外,这也有利于该交流电流不经过安静的接地层。接地层应用作基准电压,没有电流(特别是没有交流电流)流过接地层。C2旁边的过孔将PCB顶层的接地区域连接到底层的地,但没有交流电流流经这些过孔。
电感的特殊考虑
在EMI方面,我们也必须考虑电感。实际器件并不像许多人认为的那样对称。电感有个磁芯,磁芯周围绕着电线。绕组总有个起始端和个结束端。起始端连接到电感的内绕组,结束端从电感的外绕组接出。图4所示为的鼓式电感的示意图。绕组的起始端通常在器件上标有个圆点。将起始端连接到噪声开关节点,将结束端连接到安静的电压重要。对于降压稳压器,安静的电压就是输出电压。这样,外绕组上的固定电压,可以在电气上内绕组上的交流开关节点电压,从而电源的EMI将会较低。
图4:电感的绕组起始端和结束端
提下,所谓的电感也是如此。具有磁导率的电感的外部,确实使用了某种材料,该材料会收紧封装侧的大部分磁力线。然而,这种材料只能抑制磁场,而不能抑制电场。外绕组上的交流电压主要是电气或容耦合引起的问题,电感的材料没有抑制此类耦合。因此,电感也应放在电路板上,以便将噪声开关节点连接到绕组起始端,从而将EMI降到zui低。
开关模式电源良好电路板布局布线的基础
工程课程般不会教授如何实现良好的电路板布局布线。频RF类课程会研究走线阻抗的重要,但需要自行构建系统电源的工程师,通常不会将电源视为频系统,而忽视了电路板布局布线的重要。电路板布局布线不当引起的大多数问题,都可以归结为未交流电流走线尽可能短并且紧凑。了解本文所述电路板布局布线准则背后的理由并严格遵守,将能够把开关模式电源的PCB相关问题降到zui小。