阻火器
时间:2009-03-04 阅读:1215
一、阻火器简述
阻火器是用来阻止易燃气体、液体的火焰蔓延和防止回火而引起爆炸的安全装置。通常装在输送或排放易燃易爆气体的储罐和管线上。(作用是防止外部火焰窜入存有易燃易爆气体的设备、管道内或阻止火焰在设备、管道间蔓延。阻火器是应用火焰通过热导体的狭小孔隙时,由于热量损失而熄灭的原理设计制造。的阻火层结构有砾石型、金属丝网型或波纹型。)
石油化工装置的设计中,是用于阻止可燃气火焰继续传播的安全装置,自1928 年首先应用于石油工业以来,由于其简便易行而被石油及化工装置大量采用。国内石油化工装置中,应用已很普通,但在装置设计中,尤其是在线(管道) 选型中的某些细节问题还容易被忽视。现依据石化装置设计时收集(博赛德泵阀)到的有关资料,就选用的一些问题进行简要探讨。
<1 >的工作原理
关于的工作原理,目前主要有两种观点:一是基于传热作用;一是基于器壁效应。
传热作用
燃烧所需要的必要条件之一就是要达到一定的温度,即着火点。低于着火点,燃烧就会停止。依照这一原理,只要将燃烧物质的温度降到其着火点以下,就可以阻止火焰的蔓延。当火焰通过
阻火元件的许多细小通道之后将变成若干细小的火焰。设计内部的阻火元件时,则尽可能扩大细小火焰和通道壁的接触面积,强化传热,使火焰温度降到着火点以下,从而阻止火焰蔓延。
器壁效应
燃烧与爆炸并不是分子间直接反应,而是受外来能量的激发,分子键遭到破坏,产生活化分子,活化分子又分裂为寿命短但却很活泼的自由基,自由基与其它分子相撞,生成新的产物,同时也产生新的自由基再继续与其它分子发生反应。当燃烧的可燃气通过阻火元件的狭窄通道时,自由基与通道壁的碰撞几率增大,参加反应的自由基减少。当的通道窄到一定程度时,自由基与通道壁的碰撞占主导地位,由于自由基数量急剧减少,反应不能继续进行,也即燃烧反应不能通过继续传播。
<2 >的分类
目前有几类分类方法。产品()使用场合不同可分放空和管道;依阻火元件可划分为:填充型、板型、金属丝网型、液封型和波纹型等5种。其中,波纹型性能稳定,在石油化工装置中应用较多。这里以波纹型为例,说明其在石油化工装置设计中的选用。
<3> 的选用
zui大实验安全间隙—MESG值
火焰通过阻火元件的细小通道并在通道内降温。当火焰被分割小到一定程度时,经通道移走的热量足以将温度降到可燃物燃点以下,使火焰熄灭。或由器壁效应解释,当通道窄到一定程度时,自由基与管道壁的碰撞占主导地位,自由基大量减少,燃烧反应不能继续进行。因此,把在一定条件下(0. 1 MPa ,20 ℃) 刚好能够使火焰熄灭的通道尺寸定义为“zui大实验安全间隙”(MESG,Maximum Experimental Safe Gap) 。阻火元件的通道尺寸是决定性能的关键因素,不同气体具有不同的MESG值。因此,在选择时, 应根据可燃气体的组成确定其MESG值。在具体选择时,又根据MESG值将气体划分为几个等级。目前上经常采用两类方法。一是美国全国电气协会(NEC) 的分类法,它根据气体的MESG值将气体分为四个等级(A ,B ,C ,D) ;另一类是电工协会( IEC) 的方法,它也将气体分为四个等级( IIC , IIB , IIA 及I) 。两种标准划分的各类气体的MESG 值及测试气体如表1所示。
表1 两种MESG分类标准
NEC IEC MESG/ mm 测试气体
A IIC 0. 25 乙炔
B IIC 0. 28 氢气
C IIB 0. 65 乙烯
D IIA 0. 90 丙烯
G M I 1. 12 甲烷
这样,在选用时,即可在设计规定使用的规范中首先查出所用可燃气体的等级,然后根据该组气体对应的MESG 值来选择相应的阻火元件。
混合气体MESG值的确定
在化工装置设计中,经常会遇到混合可燃性气体。在这种情况下,可根据混合气体的具体组成来确定选用依据。表2 给出不同的可燃性气体混合后可能出现的几种情况以及选用建议。
表2 混合气体MESG值
混合气体 化学反应 选用建议 举例
属NEC/ IEC分类相同类别(如全部为IIA) 不易发生 以混合气体中MESG值 zui小者为设计依据 甲烷、乙烷与丁烷 采用MESG= 1. 12
可能发生 实验确定 乙炔与氢气
属NEC/ IEC 分类不同类别 不易发生 以混合气体中MESG值zui小者为设计依据 乙烯与丙烯 采用MESG= 0. 65
可能发生 实验确定 乙烯与氢气
对于混合可燃气体选取MESG时,应更加慎重。当可燃混合气体的组分之间有可能发生反应时,zui安全的方法是将气体组成及操作条件提供给专业制造厂, 由制造厂根据模拟实验确定MESG值。另外,虽然理论上选用所有可燃气体中MESG值zui小的可能是安全的,但在实际应用中,还要考虑整个管路系统(尤其是管道) 是否对该元件有压力降要求。因为MESG值越小,通过阻力越大,有可能需要扩大直径以达到工艺要求。
选择得当,就会在一定的条件下起到阻止火焰传播的作用。但是,每种都有其特定的工作范围,只能在一定的条件下起到安全保护作用,并不是任何情况下都能阻止火焰的
传播。每种都应标出其阻火元件的通道尺寸,它只能用于MESG值大于该值的气体,否则会*失效;每种在特定的条件下都有一定的阻火时间,当火焰端燃烧时间超过其阻火时间时,也会失效;对于在线型的选用更要注意由于安装位置不同而引起的选型变化,否则可能会因起不到预想的效果而埋下安全隐患。综上所述,在的选型过程中,在按照规范计算MESG值的同时,还要十分注意影响选型的各种因素,根据实际工况,确定适宜的,只有这样才能达到既确保安全又经济实用的目的。
<4>选择类型的影响因素--火源距离的影响
火焰在充满可燃气体管道中的传播速度随火焰的传播有很大的变化。如果点燃充满可燃气体的水平管道的一端,火焰首先传向管壁,然后迅速向还末引燃的气体传播,燃烧产生的热量使得燃烧气体迅速膨胀,气体膨胀又导致可燃气体前端被压缩,产生“压升”(pressure piling) 现象。火焰前端气体被压缩,密度增加,燃烧传播速度加快,燃烧时产生的热量增多,导致可燃气体前端更剧烈的“压升”。由于火焰在管道中传播的这一特性,使得火焰的传播速度可以从零加速至声速甚至超声速,火焰前端压力也可增至约20 MPa 。因此,火源点距的距离对的选择有很大影响。如果距火源较远,那么燃烧就有了一定的加速距离,可能会由爆燃转变为爆轰,火焰前端压力的增加,对阻火元件耐压能力提出了更为严格的要求。不同制造商的产品可能会有不同。
对同种可燃气体,在相同工况下,仅仅因安装位置不同,在制造强度和阻火时间的选择上就会有很大差异。因此在选用在线时,要十分注意安装位置的影响,在满足工艺条件的情况下,应尽可能使之靠近火源点,以降低对的制造要求,在保证安全的前提下,提高经济性。
选择得当,就会在一定的条件下起到阻止火焰传播的作用。但是,每种都有其特定的工作范围,只能在一定的条件下起到安全保护作用,并不是任何情况下都能阻止火焰的
传播。每种都应标出其阻火元件的通道尺寸,它只能用于MESG值大于该值的气体,否则会*失效;每种在特定的条件下都有一定的阻火时间,当火焰端燃烧时间超过其阻火时间时,也会失效;对于在线型的选用更要注意由于安装位置不同而引起的选型变化,否则可能会因起不到预想的效果而埋下安全隐患。综上所述,在的选型过程中,在按照规范计算MESG值的同时,还要十分注意影响选型的各种因素,根据实际工况,确定适宜的,只有这样才能达到既确保安全又经济实用的目的。