超声波测量方法
时间:2010-10-08 阅读:2677
超声测厚是一种广泛使用的无损检测技术,它用来从材料一侧测量材料厚度。在19世纪40年代后期,利用由声纳衍生的原理产生了*台商业超声测厚仪器。在19世纪70年代,小型便携式仪器由于优化了大多数检测应用而被广泛应用。之后,在微处理技术上的发展使得如今的、便于使用的小型仪器的性能达到了一个新的水平。 |
可测量什么? |
几乎任何一种普通工程材料都可以用超声方法来测量。超声测厚仪可用于金属、塑料、复合材料、纤维玻璃、陶瓷和玻璃。在线或加工过程中的挤压塑料和金属的测量是可行的,同样也可测量多层轧制冷作件或涂层。液面高度和生物学样品也可测量。超声测量一直是*无损的方法,它无需切开测量物。 常规的超声测量一般不适用于包括木头、纸、混凝土和泡沫产品的材料。 |
超声测厚仪如何工作? |
声能能在一个很宽的频谱范围产生,能听到的声音存在在一个相当低的频率范围,其上限约为每秒20000个周期(20KHz)。频率越高,我们感觉的音调越高。超声是一个在很高频率的声能,超过了人类能听到的界限。大部分超声测试是在频率范围从500KHz到20MHz之间实施的,但是某些特殊的仪器频率低至50KHz甚至更低并且高至225MHz。无论是什么频率,声能都由根据物理学波的基本定律,通过空气或钢介质来传播的机械振动模式组成。 所有的超声测厚仪由称之为超声波换能器的探头产生一个声脉冲,能测量它通过测试块的行程时间多长。因为声波会在不同的材料边界反射,一般在“脉冲/回波"模式下从一侧来实施测量,这样仪器测量了在试块远侧或底面回波的反射脉冲之间的来回传播时间。 探头包含一个由短电脉冲激发来产生一个超声波脉冲的压电晶片。声波耦合进入试块并在其中传播,直到遇到背壁面或其他边界。反射信号会往回传播到探头,将声能转换为电能。事实上,仪器接收来自另一侧的回波,时间间隔只有百万分之几秒。仪器用在测试材料中的声速进行编程,从而能够使用简单的数学关系式来计算厚度: T = V x t/2 此处:
检测材料中的声速实计算中的一个基本组成部分,注意到这一点是重要的。不同的材料以不同的声速传播声波,一般来说,在坚硬的材料中声速更快而在柔软的材料中声速更慢,而且声速会随温度明显变化。因此,经常需要对超声测厚仪校准被测材料的声速,而且达到精度只能和校准的精度一样好。 在MHz范围的声波不能有效地通过空气传播,因此在探头和试块之间常用一滴液体耦合剂来获得良好的声波传播。常用的耦合剂为甘油、丙二醇、水、油和凝胶体。只需要一点点量,就足够填满这极薄的空气层,否则它就会在探头和试块间存在空隙。 常用的测量声波在试块中传播的时间间隔的方法有三种。模式1是zui 常用的方法,只需简单测量在产生声波的激励脉冲和*个回波之间的时间间隔,并减去用来补偿仪器、电缆线和探头延迟的微小的零位偏移值即可。模式2测量来自试块表面的回波和*个底面回波之间的时间间隔。模式3测量在两个相继底面回波之间的时间间隔。探头类型和特定的应用要求通常会规定模式的选择。 |
探头类型 |
直接接触式探头:正如名称所表明的那样,直接接触式探头用于与试块直接接触。使用接触式探头的测量通常是zui容易实现的,对于非腐蚀测量的大多数常规测厚应用,它们经常是的方法。 |
延迟线探头:延迟线探头将一个由塑料、环氧或熔融硅作为一体的柱体作为在激发元件和试块之间的延迟线。使用它们的主要原因是用于薄材料测量,在这种情况,将激发脉冲和底面回波分离开来是非常重要的。延迟块可用作热绝缘体,防止对热敏感的探头晶片直接和热的工件接触;同时延迟线也可为具有形状或仿形状用来改善对尖锐曲面或狭窄面上的声能耦合。 |
水浸探头:水浸探头使用柱状水或水池来将声能耦合入试块,它们也可用于移动产品的在线或加工过程中的测量;是用于在小半径、凹槽的扫描的测量或耦合优化。 |
双晶探头:双晶片的探头,或简称为双晶探头,主要用于粗糙、腐蚀表面的测量。它有独立的发射晶片和接收晶片,以一个小角度安装在延迟块上从而将能量聚焦在试块表面下的一个选定的距离上。虽然有时候双晶探头测量不如其他类型探头,在腐蚀测量应用中它们通常能提供显著的良好的性能。 |
4.需考虑的事情 |
在任意超声测厚应用中,仪器和探头的选择取决于被测材料、厚度范围、几何形状、温度、精度要求以及可能存在的一些特殊条件。下面列出了需要考虑的主要因素: |
材料:被测的材料类型和厚度范围在选择仪器和探头时是zui重要的因素。许多普通工程材料,包括大多数金属、陶瓷和玻璃能够很有效地传播超声,因此有一个很广的厚度范围可以很容易地被测量。大部分塑料会更快地吸收超声能量,因此其zui大厚度范围有更多的限制,但是在许多制造业情况依然能够很容易地完成测量。橡胶、纤维玻璃和许多复合材料衰减更大而且经常需要具有优化低频操作的脉冲/接收的高穿透力仪器。 |
厚度:厚度范围也影响该选择的仪器和探头类型。一般而言,薄材料用高频探头,厚的或衰减性材料用低频探头,延迟块探头用于非常薄的材料,虽然延迟块探头(和液浸探头)由于多次界面回波的干扰在zui大可测厚度上会有更多的限制。在那些涉及到比较宽的厚度范围并且/或者多层材料的情况下,可能需要不止一种类型的探头。 |
几何形状:当工件表面曲率增加时,在探头和试块间的耦合效果会降低,因此当曲率增加时,探头尺寸一般都要减小。在一个半径极小,尤其是凹面时,可能需要特殊的仿型延迟块探头或非接触液浸探头来达到适当的声耦合。延迟式探头和液浸式探头也可用于凹槽、孔和限制性接触的类似区域。 |
温度:常规接触式探头一般用于的表面温度约为125° F或50° C。在更高温度的材料上使用,大多数直接接触式探头可能会由于热膨胀效应导致*性损坏。在那些应用中,应该一直使用带有耐热延迟线的延迟线探头、液浸探头或高温双晶探头。 |
相位颠倒:由低声阻抗材料(密度乘声速)粘合到高声阻抗材料的特殊应用,典型例子包括在钢或其他金属的上的塑料、橡胶、玻璃的覆盖层、以及在纤维玻璃上的聚合体覆盖层。在这些情况下来自两种材料界间的回波将会相位颠倒,或相对于空气边界的回波相位反向。这种情况通常建议在仪器上做简单的设置改变,但是如果不把这一点考虑进去,读数将是不准确的。 |
精度:在一个给定的应用中,许多因素会影响测量的精度,包括正确的仪器校准、材料声速的均匀性、声衰减和散射、表面粗糙度、曲率、声耦合不良、以及底面不平行度。在选择仪器和探头时所有这些因素都应该考虑进去。采用正确的校准,测量通常可达到精度为±0.001"或0.01mm,而且在某些应用中精度可达到0.0001"或0.001mm。在一个给定的应用中,精度通过使用知道厚度的参考试块来确定。通常,使用延迟块或液浸探头的模式3来测量的仪器可zui地测得工件的厚度。 |
超声测厚是一种广泛使用的无损检测技术,它用来从材料一侧测量材料厚度。在19世纪40年代后期,利用由声纳衍生的原理产生了*台商业超声测厚仪器。在19世纪70年代,小型便携式仪器由于优化了大多数检测应用而被广泛应用。之后,在微处理技术上的发展使得如今的、便于使用的小型仪器的性能达到了一个新的水平。 |
可测量什么? |
几乎任何一种普通工程材料都可以用超声方法来测量。超声测厚仪可用于金属、塑料、复合材料、纤维玻璃、陶瓷和玻璃。在线或加工过程中的挤压塑料和金属的测量是可行的,同样也可测量多层轧制冷作件或涂层。液面高度和生物学样品也可测量。超声测量一直是*无损的方法,它无需切开测量物。 常规的超声测量一般不适用于包括木头、纸、混凝土和泡沫产品的材料。 |
超声测厚仪如何工作? |
声能能在一个很宽的频谱范围产生,能听到的声音存在在一个相当低的频率范围,其上限约为每秒20000个周期(20KHz)。频率越高,我们感觉的音调越高。超声是一个在很高频率的声能,超过了人类能听到的界限。大部分超声测试是在频率范围从500KHz到20MHz之间实施的,但是某些特殊的仪器频率低至50KHz甚至更低并且高至225MHz。无论是什么频率,声能都由根据物理学波的基本定律,通过空气或钢介质来传播的机械振动模式组成。 所有的超声测厚仪由称之为超声波换能器的探头产生一个声脉冲,能测量它通过测试块的行程时间多长。因为声波会在不同的材料边界反射,一般在“脉冲/回波"模式下从一侧来实施测量,这样仪器测量了在试块远侧或底面回波的反射脉冲之间的来回传播时间。 探头包含一个由短电脉冲激发来产生一个超声波脉冲的压电晶片。声波耦合进入试块并在其中传播,直到遇到背壁面或其他边界。反射信号会往回传播到探头,将声能转换为电能。事实上,仪器接收来自另一侧的回波,时间间隔只有百万分之几秒。仪器用在测试材料中的声速进行编程,从而能够使用简单的数学关系式来计算厚度: T = V x t/2 此处:
检测材料中的声速实计算中的一个基本组成部分,注意到这一点是重要的。不同的材料以不同的声速传播声波,一般来说,在坚硬的材料中声速更快而在柔软的材料中声速更慢,而且声速会随温度明显变化。因此,经常需要对超声测厚仪校准被测材料的声速,而且达到精度只能和校准的精度一样好。 在MHz范围的声波不能有效地通过空气传播,因此在探头和试块之间常用一滴液体耦合剂来获得良好的声波传播。常用的耦合剂为甘油、丙二醇、水、油和凝胶体。只需要一点点量,就足够填满这极薄的空气层,否则它就会在探头和试块间存在空隙。 常用的测量声波在试块中传播的时间间隔的方法有三种。模式1是zui 常用的方法,只需简单测量在产生声波的激励脉冲和*个回波之间的时间间隔,并减去用来补偿仪器、电缆线和探头延迟的微小的零位偏移值即可。模式2测量来自试块表面的回波和*个底面回波之间的时间间隔。模式3测量在两个相继底面回波之间的时间间隔。探头类型和特定的应用要求通常会规定模式的选择。 |
探头类型 |
直接接触式探头:正如名称所表明的那样,直接接触式探头用于与试块直接接触。使用接触式探头的测量通常是zui容易实现的,对于非腐蚀测量的大多数常规测厚应用,它们经常是的方法。 |
延迟线探头:延迟线探头将一个由塑料、环氧或熔融硅作为一体的柱体作为在激发元件和试块之间的延迟线。使用它们的主要原因是用于薄材料测量,在这种情况,将激发脉冲和底面回波分离开来是非常重要的。延迟块可用作热绝缘体,防止对热敏感的探头晶片直接和热的工件接触;同时延迟线也可为具有形状或仿形状用来改善对尖锐曲面或狭窄面上的声能耦合。 |
水浸探头:水浸探头使用柱状水或水池来将声能耦合入试块,它们也可用于移动产品的在线或加工过程中的测量;是用于在小半径、凹槽的扫描的测量或耦合优化。 |
双晶探头:双晶片的探头,或简称为双晶探头,主要用于粗糙、腐蚀表面的测量。它有独立的发射晶片和接收晶片,以一个小角度安装在延迟块上从而将能量聚焦在试块表面下的一个选定的距离上。虽然有时候双晶探头测量不如其他类型探头,在腐蚀测量应用中它们通常能提供显著的良好的性能。 |
4.需考虑的事情 |
在任意超声测厚应用中,仪器和探头的选择取决于被测材料、厚度范围、几何形状、温度、精度要求以及可能存在的一些特殊条件。下面列出了需要考虑的主要因素: |
材料:被测的材料类型和厚度范围在选择仪器和探头时是zui重要的因素。许多普通工程材料,包括大多数金属、陶瓷和玻璃能够很有效地传播超声,因此有一个很广的厚度范围可以很容易地被测量。大部分塑料会更快地吸收超声能量,因此其zui大厚度范围有更多的限制,但是在许多制造业情况依然能够很容易地完成测量。橡胶、纤维玻璃和许多复合材料衰减更大而且经常需要具有优化低频操作的脉冲/接收的高穿透力仪器。 |
厚度:厚度范围也影响该选择的仪器和探头类型。一般而言,薄材料用高频探头,厚的或衰减性材料用低频探头,延迟块探头用于非常薄的材料,虽然延迟块探头(和液浸探头)由于多次界面回波的干扰在zui大可测厚度上会有更多的限制。在那些涉及到比较宽的厚度范围并且/或者多层材料的情况下,可能需要不止一种类型的探头。 |
几何形状:当工件表面曲率增加时,在探头和试块间的耦合效果会降低,因此当曲率增加时,探头尺寸一般都要减小。在一个半径极小,尤其是凹面时,可能需要特殊的仿型延迟块探头或非接触液浸探头来达到适当的声耦合。延迟式探头和液浸式探头也可用于凹槽、孔和限制性接触的类似区域。 |
温度:常规接触式探头一般用于的表面温度约为125° F或50° C。在更高温度的材料上使用,大多数直接接触式探头可能会由于热膨胀效应导致*性损坏。在那些应用中,应该一直使用带有耐热延迟线的延迟线探头、液浸探头或高温双晶探头。 |
相位颠倒:由低声阻抗材料(密度乘声速)粘合到高声阻抗材料的特殊应用,典型例子包括在钢或其他金属的上的塑料、橡胶、玻璃的覆盖层、以及在纤维玻璃上的聚合体覆盖层。在这些情况下来自两种材料界间的回波将会相位颠倒,或相对于空气边界的回波相位反向。这种情况通常建议在仪器上做简单的设置改变,但是如果不把这一点考虑进去,读数将是不准确的。 |
精度:在一个给定的应用中,许多因素会影响测量的精度,包括正确的仪器校准、材料声速的均匀性、声衰减和散射、表面粗糙度、曲率、声耦合不良、以及底面不平行度。在选择仪器和探头时所有这些因素都应该考虑进去。采用正确的校准,测量通常可达到精度为±0.001"或0.01mm,而且在某些应用中精度可达到0.0001"或0.001mm。在一个给定的应用中,精度通过使用知道厚度的参考试块来确定。通常,使用延迟块或液浸探头的模式3来测量的仪器可zui地测得工件的厚度。 |
超声测厚是一种广泛使用的无损检测技术,它用来从材料一侧测量材料厚度。在19世纪40年代后期,利用由声纳衍生的原理产生了*台商业超声测厚仪器。在19世纪70年代,小型便携式仪器由于优化了大多数检测应用而被广泛应用。之后,在微处理技术上的发展使得如今的、便于使用的小型仪器的性能达到了一个新的水平。 |
可测量什么? |
几乎任何一种普通工程材料都可以用超声方法来测量。超声测厚仪可用于金属、塑料、复合材料、纤维玻璃、陶瓷和玻璃。在线或加工过程中的挤压塑料和金属的测量是可行的,同样也可测量多层轧制冷作件或涂层。液面高度和生物学样品也可测量。超声测量一直是*无损的方法,它无需切开测量物。 常规的超声测量一般不适用于包括木头、纸、混凝土和泡沫产品的材料。 |
超声测厚仪如何工作? |
声能能在一个很宽的频谱范围产生,能听到的声音存在在一个相当低的频率范围,其上限约为每秒20000个周期(20KHz)。频率越高,我们感觉的音调越高。超声是一个在很高频率的声能,超过了人类能听到的界限。大部分超声测试是在频率范围从500KHz到20MHz之间实施的,但是某些特殊的仪器频率低至50KHz甚至更低并且高至225MHz。无论是什么频率,声能都由根据物理学波的基本定律,通过空气或钢介质来传播的机械振动模式组成。 所有的超声测厚仪由称之为超声波换能器的探头产生一个声脉冲,能测量它通过测试块的行程时间多长。因为声波会在不同的材料边界反射,一般在“脉冲/回波"模式下从一侧来实施测量,这样仪器测量了在试块远侧或底面回波的反射脉冲之间的来回传播时间。 探头包含一个由短电脉冲激发来产生一个超声波脉冲的压电晶片。声波耦合进入试块并在其中传播,直到遇到背壁面或其他边界。反射信号会往回传播到探头,将声能转换为电能。事实上,仪器接收来自另一侧的回波,时间间隔只有百万分之几秒。仪器用在测试材料中的声速进行编程,从而能够使用简单的数学关系式来计算厚度: T = V x t/2 此处:
检测材料中的声速实计算中的一个基本组成部分,注意到这一点是重要的。不同的材料以不同的声速传播声波,一般来说,在坚硬的材料中声速更快而在柔软的材料中声速更慢,而且声速会随温度明显变化。因此,经常需要对超声测厚仪校准被测材料的声速,而且达到精度只能和校准的精度一样好。 在MHz范围的声波不能有效地通过空气传播,因此在探头和试块之间常用一滴液体耦合剂来获得良好的声波传播。常用的耦合剂为甘油、丙二醇、水、油和凝胶体。只需要一点点量,就足够填满这极薄的空气层,否则它就会在探头和试块间存在空隙。 常用的测量声波在试块中传播的时间间隔的方法有三种。模式1是zui 常用的方法,只需简单测量在产生声波的激励脉冲和*个回波之间的时间间隔,并减去用来补偿仪器、电缆线和探头延迟的微小的零位偏移值即可。模式2测量来自试块表面的回波和*个底面回波之间的时间间隔。模式3测量在两个相继底面回波之间的时间间隔。探头类型和特定的应用要求通常会规定模式的选择。 |
探头类型 |
直接接触式探头:正如名称所表明的那样,直接接触式探头用于与试块直接接触。使用接触式探头的测量通常是zui容易实现的,对于非腐蚀测量的大多数常规测厚应用,它们经常是的方法。 |
延迟线探头:延迟线探头将一个由塑料、环氧或熔融硅作为一体的柱体作为在激发元件和试块之间的延迟线。使用它们的主要原因是用于薄材料测量,在这种情况,将激发脉冲和底面回波分离开来是非常重要的。延迟块可用作热绝缘体,防止对热敏感的探头晶片直接和热的工件接触;同时延迟线也可为具有形状或仿形状用来改善对尖锐曲面或狭窄面上的声能耦合。 |
水浸探头:水浸探头使用柱状水或水池来将声能耦合入试块,它们也可用于移动产品的在线或加工过程中的测量;是用于在小半径、凹槽的扫描的测量或耦合优化。 |
双晶探头:双晶片的探头,或简称为双晶探头,主要用于粗糙、腐蚀表面的测量。它有独立的发射晶片和接收晶片,以一个小角度安装在延迟块上从而将能量聚焦在试块表面下的一个选定的距离上。虽然有时候双晶探头测量不如其他类型探头,在腐蚀测量应用中它们通常能提供显著的良好的性能。 |
4.需考虑的事情 |
在任意超声测厚应用中,仪器和探头的选择取决于被测材料、厚度范围、几何形状、温度、精度要求以及可能存在的一些特殊条件。下面列出了需要考虑的主要因素: |
材料:被测的材料类型和厚度范围在选择仪器和探头时是zui重要的因素。许多普通工程材料,包括大多数金属、陶瓷和玻璃能够很有效地传播超声,因此有一个很广的厚度范围可以很容易地被测量。大部分塑料会更快地吸收超声能量,因此其zui大厚度范围有更多的限制,但是在许多制造业情况依然能够很容易地完成测量。橡胶、纤维玻璃和许多复合材料衰减更大而且经常需要具有优化低频操作的脉冲/接收的高穿透力仪器。 |
厚度:厚度范围也影响该选择的仪器和探头类型。一般而言,薄材料用高频探头,厚的或衰减性材料用低频探头,延迟块探头用于非常薄的材料,虽然延迟块探头(和液浸探头)由于多次界面回波的干扰在zui大可测厚度上会有更多的限制。在那些涉及到比较宽的厚度范围并且/或者多层材料的情况下,可能需要不止一种类型的探头。 |
几何形状:当工件表面曲率增加时,在探头和试块间的耦合效果会降低,因此当曲率增加时,探头尺寸一般都要减小。在一个半径极小,尤其是凹面时,可能需要特殊的仿型延迟块探头或非接触液浸探头来达到适当的声耦合。延迟式探头和液浸式探头也可用于凹槽、孔和限制性接触的类似区域。 |
温度:常规接触式探头一般用于的表面温度约为125° F或50° C。在更高温度的材料上使用,大多数直接接触式探头可能会由于热膨胀效应导致*性损坏。在那些应用中,应该一直使用带有耐热延迟线的延迟线探头、液浸探头或高温双晶探头。 |
相位颠倒:由低声阻抗材料(密度乘声速)粘合到高声阻抗材料的特殊应用,典型例子包括在钢或其他金属的上的塑料、橡胶、玻璃的覆盖层、以及在纤维玻璃上的聚合体覆盖层。在这些情况下来自两种材料界间的回波将会相位颠倒,或相对于空气边界的回波相位反向。这种情况通常建议在仪器上做简单的设置改变,但是如果不把这一点考虑进去,读数将是不准确的。 |
精度:在一个给定的应用中,许多因素会影响测量的精度,包括正确的仪器校准、材料声速的均匀性、声衰减和散射、表面粗糙度、曲率、声耦合不良、以及底面不平行度。在选择仪器和探头时所有这些因素都应该考虑进去。采用正确的校准,测量通常可达到精度为±0.001"或0.01mm,而且在某些应用中精度可达到0.0001"或0.001mm。在一个给定的应用中,精度通过使用知道厚度的参考试块来确定。通常,使用延迟块或液浸探头的模式3来测量的仪器可zui地测得工件的厚度。 |
超声测厚是一种广泛使用的无损检测技术,它用来从材料一侧测量材料厚度。在19世纪40年代后期,利用由声纳衍生的原理产生了*台商业超声测厚仪器。在19世纪70年代,小型便携式仪器由于优化了大多数检测应用而被广泛应用。之后,在微处理技术上的发展使得如今的、便于使用的小型仪器的性能达到了一个新的水平。 |
可测量什么? |
几乎任何一种普通工程材料都可以用超声方法来测量。超声测厚仪可用于金属、塑料、复合材料、纤维玻璃、陶瓷和玻璃。在线或加工过程中的挤压塑料和金属的测量是可行的,同样也可测量多层轧制冷作件或涂层。液面高度和生物学样品也可测量。超声测量一直是*无损的方法,它无需切开测量物。 常规的超声测量一般不适用于包括木头、纸、混凝土和泡沫产品的材料。 |
超声测厚仪如何工作? |
声能能在一个很宽的频谱范围产生,能听到的声音存在在一个相当低的频率范围,其上限约为每秒20000个周期(20KHz)。频率越高,我们感觉的音调越高。超声是一个在很高频率的声能,超过了人类能听到的界限。大部分超声测试是在频率范围从500KHz到20MHz之间实施的,但是某些特殊的仪器频率低至50KHz甚至更低并且高至225MHz。无论是什么频率,声能都由根据物理学波的基本定律,通过空气或钢介质来传播的机械振动模式组成。 所有的超声测厚仪由称之为超声波换能器的探头产生一个声脉冲,能测量它通过测试块的行程时间多长。因为声波会在不同的材料边界反射,一般在“脉冲/回波"模式下从一侧来实施测量,这样仪器测量了在试块远侧或底面回波的反射脉冲之间的来回传播时间。 探头包含一个由短电脉冲激发来产生一个超声波脉冲的压电晶片。声波耦合进入试块并在其中传播,直到遇到背壁面或其他边界。反射信号会往回传播到探头,将声能转换为电能。事实上,仪器接收来自另一侧的回波,时间间隔只有百万分之几秒。仪器用在测试材料中的声速进行编程,从而能够使用简单的数学关系式来计算厚度: T = V x t/2 此处:
检测材料中的声速实计算中的一个基本组成部分,注意到这一点是重要的。不同的材料以不同的声速传播声波,一般来说,在坚硬的材料中声速更快而在柔软的材料中声速更慢,而且声速会随温度明显变化。因此,经常需要对超声测厚仪校准被测材料的声速,而且达到精度只能和校准的精度一样好。 在MHz范围的声波不能有效地通过空气传播,因此在探头和试块之间常用一滴液体耦合剂来获得良好的声波传播。常用的耦合剂为甘油、丙二醇、水、油和凝胶体。只需要一点点量,就足够填满这极薄的空气层,否则它就会在探头和试块间存在空隙。 常用的测量声波在试块中传播的时间间隔的方法有三种。模式1是zui 常用的方法,只需简单测量在产生声波的激励脉冲和*个回波之间的时间间隔,并减去用来补偿仪器、电缆线和探头延迟的微小的零位偏移值即可。模式2测量来自试块表面的回波和*个底面回波之间的时间间隔。模式3测量在两个相继底面回波之间的时间间隔。探头类型和特定的应用要求通常会规定模式的选择。 |
探头类型 |
直接接触式探头:正如名称所表明的那样,直接接触式探头用于与试块直接接触。使用接触式探头的测量通常是zui容易实现的,对于非腐蚀测量的大多数常规测厚应用,它们经常是的方法。 |
延迟线探头:延迟线探头将一个由塑料、环氧或熔融硅作为一体的柱体作为在激发元件和试块之间的延迟线。使用它们的主要原因是用于薄材料测量,在这种情况,将激发脉冲和底面回波分离开来是非常重要的。延迟块可用作热绝缘体,防止对热敏感的探头晶片直接和热的工件接触;同时延迟线也可为具有形状或仿形状用来改善对尖锐曲面或狭窄面上的声能耦合。 |
水浸探头:水浸探头使用柱状水或水池来将声能耦合入试块,它们也可用于移动产品的在线或加工过程中的测量;是用于在小半径、凹槽的扫描的测量或耦合优化。 |
双晶探头:双晶片的探头,或简称为双晶探头,主要用于粗糙、腐蚀表面的测量。它有独立的发射晶片和接收晶片,以一个小角度安装在延迟块上从而将能量聚焦在试块表面下的一个选定的距离上。虽然有时候双晶探头测量不如其他类型探头,在腐蚀测量应用中它们通常能提供显著的良好的性能。 |
4.需考虑的事情 |
在任意超声测厚应用中,仪器和探头的选择取决于被测材料、厚度范围、几何形状、温度、精度要求以及可能存在的一些特殊条件。下面列出了需要考虑的主要因素: |
材料:被测的材料类型和厚度范围在选择仪器和探头时是zui重要的因素。许多普通工程材料,包括大多数金属、陶瓷和玻璃能够很有效地传播超声,因此有一个很广的厚度范围可以很容易地被测量。大部分塑料会更快地吸收超声能量,因此其zui大厚度范围有更多的限制,但是在许多制造业情况依然能够很容易地完成测量。橡胶、纤维玻璃和许多复合材料衰减更大而且经常需要具有优化低频操作的脉冲/接收的高穿透力仪器。 |
厚度:厚度范围也影响该选择的仪器和探头类型。一般而言,薄材料用高频探头,厚的或衰减性材料用低频探头,延迟块探头用于非常薄的材料,虽然延迟块探头(和液浸探头)由于多次界面回波的干扰在zui大可测厚度上会有更多的限制。在那些涉及到比较宽的厚度范围并且/或者多层材料的情况下,可能需要不止一种类型的探头。 |
几何形状:当工件表面曲率增加时,在探头和试块间的耦合效果会降低,因此当曲率增加时,探头尺寸一般都要减小。在一个半径极小,尤其是凹面时,可能需要特殊的仿型延迟块探头或非接触液浸探头来达到适当的声耦合。延迟式探头和液浸式探头也可用于凹槽、孔和限制性接触的类似区域。 |
温度:常规接触式探头一般用于的表面温度约为125° F或50° C。在更高温度的材料上使用,大多数直接接触式探头可能会由于热膨胀效应导致*性损坏。在那些应用中,应该一直使用带有耐热延迟线的延迟线探头、液浸探头或高温双晶探头。 |
相位颠倒:由低声阻抗材料(密度乘声速)粘合到高声阻抗材料的特殊应用,典型例子包括在钢或其他金属的上的塑料、橡胶、玻璃的覆盖层、以及在纤维玻璃上的聚合体覆盖层。在这些情况下来自两种材料界间的回波将会相位颠倒,或相对于空气边界的回波相位反向。这种情况通常建议在仪器上做简单的设置改变,但是如果不把这一点考虑进去,读数将是不准确的。 |
精度:在一个给定的应用中,许多因素会影响测量的精度,包括正确的仪器校准、材料声速的均匀性、声衰减和散射、表面粗糙度、曲率、声耦合不良、以及底面不平行度。在选择仪器和探头时所有这些因素都应该考虑进去。采用正确的校准,测量通常可达到精度为±0.001"或0.01mm,而且在某些应用中精度可达到0.0001"或0.001mm。在一个给定的应用中,精度通过使用知道厚度的参考试块来确定。通常,使用延迟块或液浸探头的模式3来测量的仪器可zui地测得工件的厚度。 |
超声波测量方法
一、一般测量方法:
1、(1)在一点处用探头进行两次测厚,在两次测量中探头的分割面要互为90°,取较小值为被测工件厚度值。(2)30mm多点测量法:当测量值不稳定时,以一个测定点为中心,在直径约φ30mm的圆内进行多次测量,取zui小值为被测工件厚度值。
2、测量法:在规定的测量点周围增加测量数目,厚度变化用等厚线表示。
3、连续测量法:用单点测量法沿路线连续测量,间隔不大于5mm。
4、网格测量法:在区域划上网格,按点测厚记录。此方法在尿素高压设备、不锈钢衬里腐蚀监测中广泛使用。
二、超声波测厚示值失真原因分析:
超声波测厚在实际应用中,尤其是在役设备的监测中,如果出现示值失真,偏离实际厚度的现象,结果造成管线(设备)隐患存在,就是依据错误的数据更换了管件,造成大量材料浪费。根据我公司几年来超声波测厚的跟踪使用情况,将示值失真现象及原因分析如下:
1、无示值显示或示值闪烁不稳原因分析:这种现象在现场设备和管道检测中时常出现,经过大量现象和数据分析,归纳原因如下:
(1)工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。在役设备、管道大部分是表面锈蚀,耦合效果极差。
(2)工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。
(3)检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。
(4)铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。
(5)探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度嶒加,导致灵敏度下降,从而造成不显示或闪烁。
(6)被测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在情况下甚至无读数。
2、示值过大或过小原因分析 在实际检测工作中,经常碰到测厚仪示值与设计值(或预期值)相比,明显偏大或偏小,原因分析如下:
(1)被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,测厚仪显示值为壁厚加沉积物厚度。 (2)当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%(此时要用超声波探伤仪进一步进行缺陷检测)。
(3)温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。
(4)层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。
(5)耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。实际使用中由于耦合剂使用过多,造成探头离开工件时,仪器示值为耦合剂层厚度值。
(6)声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。
7)应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。
(8)金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。
三、超声波测厚示值失真的预防措施及注意事项:由以上产生示值失真的原因分析,在现场检测中就应采取相应措施,进行事前积极预防,避免造成事故隐患或不必要的浪费。为此,根据几年来的跟踪检测经验,归纳总结如下几点,作为预防超声测厚示值失真的预防措施。
1、正确选用测厚探头
(1)测曲面工件时,采用曲面探头护套或选用小管径探头(φ6mm,可较的测量管道等曲面材料。(2)对 于 晶 粒 粗 大 的 铸 件 和 奥 氏 体 不 锈 钢 等,应 选 用 频 率 较 低 的 粗 晶 专 用 探 头(2.5MHz.
(3)测高温工件时,应选用高温探头(300-600°C,切勿使用普通探头。
(4)探头表面有划伤时,可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。
2、对被检物表面进行处理。通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。
3、正确识别材料,选择合适声速。在测量前一定要查清被测物是哪种材料,正确预置声速。对于高温工件,根据实际温度,按修正后的声速预置或按常温测量后,将厚度值予以修正。此步很关键,现场检测中经常因忽视这方面的影响而出错。
4、正确使用耦合剂。首先根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。
5、特殊情况的处理
(1)检测时发现数值明显偏离预期值,应用超声波探伤仪进行辅助判断。当发现背面有腐蚀凹坑时,这个区域测量就得十分小心,可选择变换分割面角度作多次测量。
(2)当测量复合外形的工件(如管子弯头处)时,可采用〔一、1、(1)〕介绍的方法,选较小的数据作为该工件在测量点处的厚度。
(3)被测工件的另一表面必须与被测面平行,否则得不到满意的超声响应,将引起测量误差或根本无读数显示。
(4)对于层叠材料、复合材料以及内部结构特异的,常见的应用超声反射原理测量厚度的仪器就不适用。