北京万顺华科技有限公司

化工仪器网免费会员

收藏

光纤

时间:2009-03-18      阅读:5247

光纤

  是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。光导纤维由前香港中文大学校长高锟发明。

  微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至,的另一端的接收装置使用光敏元件检测脉冲。

  在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,被用作长距离的信息传递。

  通常与光缆两个名词会被混淆.多数在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆.外层的保护结构可防止周遭环境对的伤害,如水,,电击等.光缆分为:,缓冲层及披覆.和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模中,芯的直径是15μm~50μm 大致与人的头发的粗细相当。而单模芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套, 以使保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。通常被扎成束,外面有外壳保护。 纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。

光导纤维的发明和使用

  1870年的一天,英国物理学家丁达尔到*学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。结果使观众们大吃一惊。人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。

  人们曾经发现,光能沿着从桶中喷出的细酒流传输;人们还发现,光能顺着弯曲的玻璃棒前进。这是为什么呢?难道光线不再直进了吗?这些现象引起了丁达尔的注意,经过他的研究,发现这是全反射的作用,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。表面上看,光好像在水流中弯曲前进。实际上,在弯曲的水流里,光仍沿直线传播,只不过在内表面上发生了多次全反射,光线经过多次全反射向前传播。

  后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。由于这种纤维能够用来传输光线,所以称它为光导纤维。

  光导纤维可以用在通信技术里。19799月,一条33公里120路光缆通信系统在北京建成,几年后上海、天津、武汉等地也相继铺设了光缆线路,利用光导纤维进行通信。

  利用光导纤维进行的通信叫通信。一对金属线至多只能同时传送一千多路,而根据理论计算,一对细如蛛丝的光导纤维可以同时通一百亿路!铺设1000公里的同轴电缆大约需要500吨铜,改用通信只需几公斤石英就可以了。沙石中就含有石英,几乎是取之不尽的。

  另外,利用光导纤维制成的内窥镜,可以帮助医生检查胃、食道、十二指肠等的疾病。光导纤维胃镜是由上千根玻璃纤维组成的软管,它有输送光线、传导图像的本领,又有柔软、灵活,可以任意弯曲等优点,可以通过食道插入胃里。光导纤维把胃里的图像传出来,医生就可以窥见里的情形,然后根据情况进行诊断和治疗。

系统的运用

  多股光导纤维做成的光缆可用于通信,它的传导性能良好,传输信息容量大,一条通路可同时容纳十亿人通话。可以同时传送千套电视节目,供自由选看。光导纤维内窥镜可导入心脏和脑室,测量心脏中的血压、血液中氧的饱和度、体温等。用光导纤维连接的激光手术刀已在临床应用,并可用作光敏法治癌。

  光导纤维可以把阳光送到各个角落,还可以进行机械加工。计算机、机器人、汽车配电盘等也已成功地用光导纤维传输光源或图像。如与敏感元件组合或利用本身的特性,则可以做成各种传感器,测量压力、流量、温度、位移、光泽和颜色等。在能量传输和信息传输方面也获得广泛的应用。

  高分子光导纤维开发之初,仅用于汽车照明灯的控制和装饰。现在主要用于医学、装饰、汽车、船舶等方面,以显示元件为主。在通信和图像传输方面,高分子光导纤维的应用日益增多,工业上用于光导向器、显示盘、标识、开关类照明调节、光学传感器等,同时也用在装饰显示、广告显示。

的历史

  1880-AlexandraGrahamBell发明光束通话传输

  1960-电射及之发明

  1966-华裔科学家之父高锟 预言将用于通信。

  1970-美国康宁公司成功研制成传输损耗只有20dm/km的。

  1977-实际安装网路

  1978-FORT在法国安装其生产之电

  1979-赵梓森拉制出我国自主研发的*根实用,被誉为中国之父

  1990-区域网路及其他短距离传输应用之

  2000-到屋边=>到桌边

  2005 FTTH(Fiber To The Home)直接到家庭

的分类特征

  按材质分,有无机光导纤维和高分子光导纤维,目前在工业上大量应用的是前者。无机光导纤维材料又分为单组分和多组分两类。单组分即石英,主要原料为四氯化硅、三氯氧磷和三溴化硼等。其纯度要求铜、铁、钴、镍、锰、铬、钒等过渡金属离子杂质含量低于10ppb。除此之外,OH-离子要求低于10ppb。石英纤维已被广泛使用。多组分的原料较多,主要有二氧化硅、三氧化二硼、硝酸钠、氧化铊等。这种材料尚未普及。高分子光导纤维是以透明聚合物制得的光导纤维,由纤维芯材和包皮鞘材组成。芯材为高纯度高透光性的聚甲基丙烯酸甲酯或聚苯乙烯抽丝制得的纤维,外层为含氟聚合物或有机硅聚合物等。

  光导通信的研究和实用化,与光导纤维的低损耗密切相关。光能的损耗可否大大降低,关键在于材料纯度的提高。玻璃材料中的杂质产生的光吸收,造成了zui大的光损耗,其中过渡金属离子特别有害。目前,由于玻璃材料的高纯度化,这些杂质对光导纤维的损耗影响已很小。

  石英玻璃光导纤维的优点是损耗低,当光波长为1.01.7μm(约14μm附近),损耗只有1dB/km,在1.55μm处zui低,只有0.2dB/km。高分子光导纤维的光损耗较高,1982年,日本电信电报公司利用氘化甲基丙烯酸甲酯聚合抽丝作芯材,光损耗率降低到20dB/km。但高分子光导纤维的特点是能制大尺寸,大数值孔径的光导纤维,光源耦合效率高,挠曲性好,微弯曲不影响导光能力,配列、粘接容易,便于使用,成本低廉。但光损耗大,只能短距离应用。光损耗在10100dB/km的光导纤维,可传输几百米。

  主要分以下两大类:

  1)传输点模数类

  传输点模数类分单模(Single Mode Fiber)和多模(Multi Mode Fiber)。单模的纤芯直径很小, 在给定的工作波长上只能以单一模式传输,传输频带宽,传输容量大。多模是在给定的工作波长上,能以多个模式同时传输的。 与单模相比,多模的传输性能较差。

  2)折射率分布类

  折射率分布类可分为跳变式和渐变式。跳变式纤芯的折射率和保护层的折射率都是一个常数。 在纤芯和保护层的交界面,折射率呈阶梯型变化。渐变式纤芯的折射率随着半径的增加按一定规律减小, 在纤芯与保护层交界处减小为保护层的折射率。纤芯的折射率的变化近似于抛物线。

结构及种类

  光及其特性:

  1.光是一种电磁波

  可见光部分波长范围是:390~760nm(毫微米。大于760nm部分是红外光,小于390nm部分是紫外光。中应用的是:85013001550三种。

  2.光的折射,反射和全反射。

  因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。而且,折射光的角度会随入射光的角度变化而变化。当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。通讯就是基于以上原理而形成的。

  1.结构:

  裸纤一般分为三层:中心高折射率玻璃芯(芯径一般为5062.5μm),中 间为低折射率硅玻璃包层(直径一般为125μm),zui外是加强用的树脂涂层。

  2.数值孔径:

  入射到端面的光并不能全部被所传输,只是在某个角度范围内的入射光才可以。这个角度就称为的数值孔径。的数值孔径大些对于的对接是有利的。不同厂家生产的的数值孔径不同(AT&T CORNING)。

  3.的种类:

  A.按光在中的传输模式可分为:单摸和多模。

  多模:中心玻璃芯较粗(5062.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的在2KM时则只有300MB的带宽了。因此,多模传输的距离就比较近,一般只有几公里。单模:中心玻璃芯较细(芯径一般为910μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

  单模(Single-mode Fiber):一般跳纤用黄色表示,接头和保护套为蓝色;传输距离较长。

  多模(Multi-mode Fiber):一般跳纤用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

  B.按*传输频率窗口分:常规型单模和色散位移型单模。

  常规型:生产厂家将传输频率*化在单一波长的光上,如1300nm

  色散位移型:生产长家将传输频率*化在两个波长的光上,如:1300nm1550nm

  C.按折射率分布情况分:突变型和渐变型。

  突变型:中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于短途低速通讯,如:工控。但单模由于模间色散很小,所以单模都采用突变型。

  渐变型:中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高带宽,增加传输距离,但成本较高,现在的多模多为渐变型。

  4.常用规格:

  单模:8/125μm9/125μm10/125μm

  多模:50/125μm,欧洲标准

  62.5/125μm,美国标准

  工业,医疗和低速网络:100/140μm200/230μm

  塑料:98/1000μm,用于汽车控制

的衰减

  造成衰减的主要因素有:本征,弯曲,挤压,杂质,不均匀和对接等。

  本征:是的固有损耗,包括:瑞利散射,固有吸收等。

  弯曲:弯曲时部分内的光会因散射而损失掉,造成的损耗。

  挤压:受到挤压时产生微小的弯曲而造成的损耗。

  杂质:内杂质吸收和散射在中传播的光,造成的损失。

  不均匀:材料的折射率不均匀造成的损耗。

  对接:对接时产生的损耗,如:不同轴(单模同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

传输优点

  直到1960年,美国科学家Maiman发明了世界上*台激光器后,为光通讯提供了良好的光源。随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗,从而奠定了光通讯的基石。从此,光通讯进入了飞速发展的阶段。

  传输有许多突出的优点:

  1。频带宽

  频带的宽窄代表传输容量的大小。载波的频率越高,可以传输信号的频带宽度就越大。在VHF频段,载波频率为485MHz300Mhz。带宽约250MHz,只能传输27套电视和几十套调频广播。可见光的频率达100000GHz,比VHF频段高出一百多万倍。尽管由于对不同频率的光有不同的损耗,使频带宽度受到影响,但在zui低损耗区的频带宽度也可达30000GHz。目前单个光源的带宽只占了其中很小的一部分多模的频带约几百兆赫,好的单模可达10GHz以上,采用*的相干光通信可以在30000GHz范围内安排2000个光载波,进行波分复用,可以容纳上百万个频道。

  2.损耗低

  在同轴电缆组成的系统中,的电缆在传输800MHz信号时,每公里的损耗都在40dB以上。相比之下,光导纤维的损耗则要小得多,传输131um的光,每公里损耗在035dB以下若传输155um的光,每公里损耗更小,可达02dB以下。这就比同轴电缆的功率损耗要小一亿倍,使其能传输的距离要远得多。此外,传输损耗还有两个特点,一是在全部有线电视频道内具有相同的损耗,不需要像电缆干线那样必须引人均衡器进行均衡;二是其损耗几乎不随温度而变,不用担心因环境温度变化而造成干线电平的波动。

  3.重量轻

  因为非常细,单模芯线直径一般为4um10um,外径也只有125um,加上防水层、加强筋、护套等,用448根组成的光缆直径还不到13mm,比标准同轴电缆的直径47mm要小得多,加上是玻璃纤维,比重小,使它具有直径小、重量轻的特点,安装十分方便。

  4.抗干扰能力强

  因为的基本成分是石英,只传光,不导电,不受电磁场的作用,在其中传输的光信号不受电磁场的影响,故传输对电磁干扰、工业干扰有很强的抵御能力。也正因为如此,在中传输的信号不易被窃听,因而利于保密。

  5.保真度高

  因为传输一般不需要中继放大,不会因为放大引人新的非线性失真。只要激光器的线性好,就可高保真地传输电视信号。实际测试表明,好的调幅系统的载波组合三次差拍比CCTB70dB以上,交调指标cM也在60dB以上,远高于一般电缆干线系统的非线性失真指标。

  6.工作性能可靠

  我们知道,一个系统的可靠性与组成该系统的设备数量有关。设备越多,发生故障的机会越大。因为系统包含的设备数量少不像电缆系统那样需要几十个放大器,可靠性自然也就高,加上设备的寿命都很长,*工作时间达50万~75万小时,其中寿命zui短的是光发射机中的激光器,zui低寿命也在10万小时以上。故一个设计良好、正确安装调试的系统的工作性能是非常可靠的。

  7.成本不断下降

  目前,有人提出了新摩尔定律,也叫做光学定律(Optical Law)。该定律指出,传输信息的带宽,每6个月增加1倍,而价格降低1倍。光通信技术的发展,为Internet宽带技术的发展奠定了非常好的基础。这就为大型有线电视系统采用传输方式扫清了zui后一个障碍。由于制作的材料石英来源十分丰富,随着技术的进步,成本还会进一步降低;而电缆所需的铜原料有限,价格会越来越高。显然,今后传输将占优势,成为建立全省、以至全国有线电视网的zui主要传输手段。

  结构原理 光导纤维是由两层折射率不同的玻璃组成。内层为光内芯,直径在几微米至几十微米,外层的直径0.10.2mm。一般内芯玻璃的折射率比外层玻璃大1%。根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。这时光线在界面经过无数次的全反射,以锯齿状路线在内芯向前传播,zui后传至纤维的另一端。这种光导纤维属皮芯型结构。若内芯玻璃折射率是均匀的,在界面突然变化降低至外层玻璃的折射率,称为阶跃型结构。如内芯玻璃断面折射率从中心向外变化到低折射率的外层玻璃,称为梯度型结构。外层玻璃具有光绝缘性和防止内芯玻璃受污染。另一类光导纤维称自聚焦型结构,它好似由许多微双凸透镜组合而成,迫使入射光线逐渐自动地向中心方向会聚,这类纤维中心的折射率zui高,向四周连续均匀地减少,至边缘为zui低。

生产方法

  管棒法:将内芯玻璃棒插入外层玻璃管中(尽量紧密),熔融拉丝;

  双坩埚法:在两个同心铂坩埚内,将内芯和外层玻璃料分别放入内、外坩埚中;

  分子填充法:将微孔石英玻璃棒浸入高折射率的添加剂溶液中,得所需折射率分布的断面结构,再进行拉丝操作,它的工艺比较复杂。在光导纤维通信中还可用内外气相沉积法等,以保证能制造出光损耗率低的光导纤维。光导纤维应用时还要做成光缆,它是由数根光导纤维合并先组成光导纤维芯线,外面被覆塑料皮,再把光导纤维芯线组合成光缆,其中光导纤维的数目可以从几十到几百根,zui大的达到4000

光网络的结构

  光网络的基本结构类型有星形、总线形(含环形)和树形等3种,可组合成各种复杂的网络结构。光网络可横向分割为核心网、城域/本地网和接入网。核心网倾向于采用网状结构,城域/本地网多采用环形结构,接入网将是环形和星形相结合的复合结构。光网络可纵向分层为客户层、光通道层(OCH)、光复用段层(OMS)和光传送段层(OTS)等层。两个相邻层之间构成客户/服务层关系。

  客户层:由各种不同格式的客户信号(如SDHPDHATMIP等)组成.

  光通道层:为透明传送各种不同格式的客户层信号提供端到端的光通路联网功能,这一层也产生和插入有关光通道配置的开销,如波长标记、端口连接性、载荷标志(速率、格式、线路码)以及波长保护能力等,此层包含OXCOADM相关功能.

  光复用段层:为多波长光信号提供联网功能,包括插入确保信号完整性的各种段层开销,并提供复用段层的生存性,波长复用器和交叉连接器属于此层.

  光传送段层:为光信号在各种不同的光媒体(如G652G.653G.655)上提供传输功能,光放大器所提供的功能属于此层。

  从应用领域来看,光网络将沿着"干线网本地网城域网接入网用户驻地网"的次序逐步渗透。

 

上一篇: 新型光电液位传感器原理、特点和适用范围 下一篇: 光的基础知识
提示

请选择您要拨打的电话: