北京西美杰科技有限公司

化工仪器网初级16

收藏

安全高效的蛋白结晶条件筛选试剂盒

时间:2019-12-06      阅读:759

    想要获得高质量蛋白晶体一般需要克3个难题1、获得纯度高的,均一的蛋白样品;2,筛选可结晶的条件;3,优化结晶条件,后获得高质量的单晶;其中,筛选可结晶的条件是获得蛋白质晶体的主要瓶颈之一;

    西美杰代理的Jena Biosource品牌中有一系列蛋白结晶研究所要用的试剂和耗材,以下给大家介绍一下Jena里面的蛋白结晶条件筛选试剂盒。

1、JBScreen Basic

JBScreen Basic是基于稀疏矩阵法的蛋白结晶试剂盒,包含了96种筛选条件,整套试剂盒分为4个小规格,每个小规格包含24种条件,24个条件分别密封在螺旋盖试管中,每管10ml,可以随时使用。Jena里面的蛋白结晶筛选试剂盒不包含二甲shenjia

盐,用MES进行替代。

 

名称

货号

规格

JBScreen Basic 1

CS-121

24 solutions (10 ml each)

JBScreen Basic 2

CS-122

24 solutions (10 ml each)

JBScreen Basic 3

CS-123

24 solutions (10 ml each)

JBScreen Basic 4

CS-124

24 solutions (10 ml each)

JBScreen Basic 1 – 4

CS-125

4 Kits

JBScreen Basic HTS

CS-203L

96 solutions (1.7 ml each)

 

2、 JBScreen Classic

      这个系列是Jena品牌中初推出的经典的结晶条件试剂盒,在文献中的应用以每年30%的速度增长;这个试剂盒包含了240个筛选条件,涵盖了各种有效沉淀剂和Buffer。整套试剂盒分成了10小规格,每个规格包含了24个条件,如果只想要其中某些条件,是可以单独购买小规格试剂盒的;

 

名称

货号

条件数量

JBScreen Classic 1 (PEG 400 to 3000 based)

CS-101L

24 solutions (10 ml each)

JBScreen Classic 2 (PEG 4000 based)

CS-102L

24 solutions (10 ml each)

JBScreen Classic 3 (PEG 4000+ based)

CS-103L

24 solutions (10 ml each)

JBScreen Classic 4 (PEG 5000 MME to 8000 based)

CS-104L

24 solutions (10 ml each)

JBScreen Classic 5 (PEG 8000 to 20000 based)

CS-105L

24 solutions (10 ml each)

JBScreen Classic 6 (Ammonium Sulfate based)

CS-106L

24 solutions (10 ml each)

JBScreen Classic 7 (MPD based)

CS-107L

24 solutions (10 ml each)

JBScreen Classic 8 (MPD/Alcohol based)

CS-108L

24 solutions (10 ml each)

JBScreen Classic 9 (Alcohol/Salt based)

CS-109L

24 solutions (10 ml each)

JBScreen Classic 10 (Salt based)

CS-110L

24 solutions (10 ml each)

 

JBScreen Classic 1–10

CS-114L

10 Kits

JBScreen Classic HTS I (PEG based)

CS-201L

96 solutions (1.7 ml each)

JBScreen Classic HTS II (Ammonium Sulfate, MPD, Alcohol and Salt based)

CS-202L

96 solutions (1.7 ml each)

 

 

         3、JBScreen pentaerythritol

      基于两种新奇的沉淀剂,Pentaerythrotol丙氧基化物和乙基化物,用于生物大分子初结晶条件的筛选。两者都包含一个Pentaerythrotol的支链型高分子。因此他们不同于传统的沉淀剂(如MPD和PEG)。另外,Pentaerythrotol合物具有冷冻保护剂的功能,蛋白晶体在这些高浓度的沉淀剂中生长,并能够由晶滴直接冷冻

    

名称

货号

规格

JBScreen Pentaerythritol 1 (PEP 426 based)

CS-191

24 solutions (10 ml each)

JBScreen Pentaerythritol 2 (PEP 629 based)

CS-192

24 solutions (10 ml each)

JBScreen Pentaerythritol 3 (PEE 270 based)

CS-193

24 solutions (10 ml each)

JBScreen Pentaerythritol 4 (PEE 797 based)

CS-194

24 solutions (10 ml each)

JBScreen Pentaerythritol 1 – 4

CS-195

4 Kits

JBScreen Pentaerythritol HTS

CS-210L

96 solutions (1.7 ml each)

 

     参考文献:

  1. Sheu-Gruttadauria et al. (2019) Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. The EMBO Journal e101153.
  2. Pozzi et al. (2019) Evidence of Destabilization of the Human Thymidylate Synthase (hTS) Dimeric Structure Induced by the Interface Mutation Q62R. Biomolecules DOI:10.3390/biom9040134.
  3. Deka et al. (2018) Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 504:40.
  4. Dall et al. (2018) Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J. Biol. Chem. 293:13151.
  5. Rinaldi et al. (2018) Crystallization and initial X-ray diffraction analysis of the multi-domain Brucella blue light-activated histidine kinase LOV-HK in its illuminated state. Biochem. Biophys. Rep. 16:39.
  6. Flores-Ibarra et al. (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci. Rep. 8:9835.
  7. Bernedo-Navarro et al. (2018) Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins 10:108.
  8. Zeng et al. (2017) Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife DOI:10.7554/eLife.28619.
  9. Oiki et al. (2017) Alternative substrate-bound conformation of bacterial solute-binding protein involved in the import of mammalian host glycosaminoglycans. Sci. Rep. 7:17005.
  10. Jansson et al. (2017) The interleukin-like epithelial-mesenchymal transition inducer ILEI exhibits a non-interleukin-like fold and is active as a domain-swapped dimer. J. Biol. Chem. 292:15501.
  11. McPhail et al. (2017) The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 25:121.
  12. Songsiriritthigul et al. (2017) Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Cryst F 73:62.
  13. Yokoyama et al. (2017) Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP. Acta Cryst F 73:555.
  14. Corvaglia et al. (2019) Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificialanalogues of DNA mimic proteins. Nucleic Acids Research DOI:10.1093/nar/gkz352.
  15. Deka et al. (2017) Comparative structural and enzymatic studies on Salmonella typhimurium diaminopropionate ammonia lyase reveal its unique features. J. Struct. Biol. DOI:10.1016/j.jsb.2017.12.012.
  16. Moonens et al. (2015) Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Veterinary Research 46:14.
  17. Zano et al. (2014) Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni. Acta Cryst. D 70:442.
  18. Goyal et al. (2013) Crystallization and preliminary X-ray crystallographic analysis of the curli transporter CsgG. Acta Cryst. F69:1349.
  19. Fujita et al. (2017) Structural Flexibility of an Inhibitor Overcomes Drug Resistance Mutations in Staphylococcus aureus FtsZ. ACS Chem. Biol. 12:1947.
  20. Weidenweber et al. (2017) Structure of the acetophenone carboxylase core complex: prototype of a new class of ATP-dependent carboxylases/hydrolases. Sci. Rep. 7:39674.
  21. Fujita et al. (2017) Identification of the key interactions in structural transition pathway of FtsZ from Staphylococcus aureus. J. Struct. Biol. 198:65.
  22. Wagner et al. (2016) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114.
  23. Demmer et al. (2015) Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure. JBC 290:21985.
  24. Rekittke et al. (2015) Structure of the GcpE-HMBPP complex from Thermus thermophilius. Biochem. Biophys. Res. Commun.458:246.
  25. Uchida et al. (2014) Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. J. Biochem. 155(3):173.
  26. McDougall et al. (2019) Proteinaceous Nano container Encapsulate Polycyclic Aromatic Hydrocarbons. Sci. Rep. 9:1058.
  27. De Wijn et al. (2018) Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Cryst F 74:747.
  28. Kumar et al. (2018) Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int. J. Biol. Macromol. 117:890.
  29. Leal et al. (2018) Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol. 114:64.
  30. Sousa Cavada et al. (2018) Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromolec. 106:369.
  31. Ernst et al. (2018) A comparative structural analysis of the surface properties of asco-laccases. PLOS ONEDOI:10.1371/journal.pone.0206589.
  32. Kumar et al. (2017) Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol. 13:54.
  33. Nascimento et al. (2017) Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 92:79.
  34. Cattani et al. (2015) Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nat. Chem. 7:823.
  35. Boltsis et al. (2014) Non-contact Current Transfer Induces the Formation and Improves the Xray Diffraction Quality of Protein Crystals. Crystal Growth & Design 14:4347.
  36. Kampatsikas et al. (2017) In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Acta Cryst. F 73:491.
  37. Kolek et al. (2016) A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase. Acta Cryst. F 72:307.
  38. Tan et al. (2014) A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Cryst. D 70:2054.
  39. Li et al. (2014) Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy. Crystal Growth & Design 14:2034.
  40. Jacobs et al. (2012) Expression, purification and crystallization of the outer membrane lipoprotein GumB from Xanthomonas campestris. Acta Cryst. F 68:1255.
  41. Li et al.(2011) Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. Crystal Growth & Design 11(2):530.
  42. Shaw Stewart et al. (2011) Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization. Crystal Growth & Design 11(8):3432.
  43. Caffrey et al. (2009) Crystallizing Membrane Proteins Using Lipidic Mesophases. Nat Protoc. 4:706.
  44. Cherezov et al. (2006) In Meso Structure of the Cobalamin Transporter, BtuB, at 1.95 Å Resolution. J. Mol. Biol. 364:716.
上一篇: Mirus CHOgro系统助力新冠肺炎疫苗和单抗研发! 下一篇: 如何应对植物组培过程中的污染问题?新型高效方法值得推荐
提示

请选择您要拨打的电话: