安全高效的蛋白结晶条件筛选试剂盒
时间:2019-12-06 阅读:759
想要获得高质量蛋白晶体一般需要克服3个难题:1、获得纯度高的,均一的蛋白样品;2,筛选可结晶的条件;3,优化结晶条件,后获得高质量的单晶;其中,筛选可结晶的条件是获得蛋白质晶体的主要瓶颈之一;
西美杰代理的Jena Biosource品牌中有一系列蛋白结晶研究所要用的试剂和耗材,以下给大家介绍一下Jena里面的蛋白结晶条件筛选试剂盒。
1、JBScreen Basic
JBScreen Basic是基于稀疏矩阵法的蛋白结晶试剂盒,包含了96种筛选条件,整套试剂盒分为4个小规格,每个小规格包含24种条件,24个条件分别密封在螺旋盖试管中,每管10ml,可以随时使用。Jena里面的蛋白结晶筛选试剂盒不包含二甲shenjia
盐,用MES进行替代。
名称 | 货号 | 规格 |
---|---|---|
JBScreen Basic 1 | CS-121 | 24 solutions (10 ml each) |
JBScreen Basic 2 | CS-122 | 24 solutions (10 ml each) |
JBScreen Basic 3 | CS-123 | 24 solutions (10 ml each) |
JBScreen Basic 4 | CS-124 | 24 solutions (10 ml each) |
JBScreen Basic 1 – 4 | CS-125 | 4 Kits |
JBScreen Basic HTS | CS-203L | 96 solutions (1.7 ml each) |
2、 JBScreen Classic
这个系列是Jena品牌中初推出的经典的结晶条件试剂盒,在文献中的应用以每年30%的速度增长;这个试剂盒包含了240个筛选条件,涵盖了各种有效沉淀剂和Buffer。整套试剂盒分成了10小规格,每个规格包含了24个条件,如果只想要其中某些条件,是可以单独购买小规格试剂盒的;
名称 | 货号 | 条件数量 |
---|---|---|
JBScreen Classic 1 (PEG 400 to 3000 based) | CS-101L | 24 solutions (10 ml each) |
JBScreen Classic 2 (PEG 4000 based) | CS-102L | 24 solutions (10 ml each) |
JBScreen Classic 3 (PEG 4000+ based) | CS-103L | 24 solutions (10 ml each) |
JBScreen Classic 4 (PEG 5000 MME to 8000 based) | CS-104L | 24 solutions (10 ml each) |
JBScreen Classic 5 (PEG 8000 to 20000 based) | CS-105L | 24 solutions (10 ml each) |
JBScreen Classic 6 (Ammonium Sulfate based) | CS-106L | 24 solutions (10 ml each) |
JBScreen Classic 7 (MPD based) | CS-107L | 24 solutions (10 ml each) |
JBScreen Classic 8 (MPD/Alcohol based) | CS-108L | 24 solutions (10 ml each) |
JBScreen Classic 9 (Alcohol/Salt based) | CS-109L | 24 solutions (10 ml each) |
JBScreen Classic 10 (Salt based) | CS-110L | 24 solutions (10 ml each)
|
JBScreen Classic 1–10 | CS-114L | 10 Kits |
JBScreen Classic HTS I (PEG based) | CS-201L | 96 solutions (1.7 ml each) |
JBScreen Classic HTS II (Ammonium Sulfate, MPD, Alcohol and Salt based) | CS-202L | 96 solutions (1.7 ml each) |
3、JBScreen pentaerythritol
基于两种新奇的沉淀剂,Pentaerythrotol丙氧基化物和乙基化物,用于生物大分子初结晶条件的筛选。两者都包含一个Pentaerythrotol的支链型高分子。因此他们不同于传统的沉淀剂(如MPD和PEG)。另外,Pentaerythrotol合物具有冷冻保护剂的功能,蛋白晶体在这些高浓度的沉淀剂中生长,并能够由晶滴直接冷冻;
名称 | 货号 | 规格 |
---|---|---|
JBScreen Pentaerythritol 1 (PEP 426 based) | CS-191 | 24 solutions (10 ml each) |
JBScreen Pentaerythritol 2 (PEP 629 based) | CS-192 | 24 solutions (10 ml each) |
JBScreen Pentaerythritol 3 (PEE 270 based) | CS-193 | 24 solutions (10 ml each) |
JBScreen Pentaerythritol 4 (PEE 797 based) | CS-194 | 24 solutions (10 ml each) |
JBScreen Pentaerythritol 1 – 4 | CS-195 | 4 Kits |
JBScreen Pentaerythritol HTS | CS-210L | 96 solutions (1.7 ml each) |
参考文献:
- Sheu-Gruttadauria et al. (2019) Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. The EMBO Journal e101153.
- Pozzi et al. (2019) Evidence of Destabilization of the Human Thymidylate Synthase (hTS) Dimeric Structure Induced by the Interface Mutation Q62R. Biomolecules DOI:10.3390/biom9040134.
- Deka et al. (2018) Structural and biochemical studies on the role of active site Thr166 and Asp236 in the catalytic function of D-Serine deaminase from Salmonella typhimurium. Biochem. Biophys. Res. Commun. 504:40.
- Dall et al. (2018) Structural and functional analysis of cystatin E reveals enzymologically relevant dimer and amyloid fibril states. J. Biol. Chem. 293:13151.
- Rinaldi et al. (2018) Crystallization and initial X-ray diffraction analysis of the multi-domain Brucella blue light-activated histidine kinase LOV-HK in its illuminated state. Biochem. Biophys. Rep. 16:39.
- Flores-Ibarra et al. (2018) Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail. Sci. Rep. 8:9835.
- Bernedo-Navarro et al. (2018) Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins 10:108.
- Zeng et al. (2017) Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife DOI:10.7554/eLife.28619.
- Oiki et al. (2017) Alternative substrate-bound conformation of bacterial solute-binding protein involved in the import of mammalian host glycosaminoglycans. Sci. Rep. 7:17005.
- Jansson et al. (2017) The interleukin-like epithelial-mesenchymal transition inducer ILEI exhibits a non-interleukin-like fold and is active as a domain-swapped dimer. J. Biol. Chem. 292:15501.
- McPhail et al. (2017) The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 25:121.
- Songsiriritthigul et al. (2017) Crystal structure of the N-terminal anticodon-binding domain of the nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori. Acta Cryst F 73:62.
- Yokoyama et al. (2017) Large-scale crystallization and neutron crystallographic analysis of HSP70 in complex with ADP. Acta Cryst F 73:555.
- Corvaglia et al. (2019) Carboxylate-functionalized foldamer inhibitors of HIV-1 integrase and Topoisomerase 1: artificialanalogues of DNA mimic proteins. Nucleic Acids Research DOI:10.1093/nar/gkz352.
- Deka et al. (2017) Comparative structural and enzymatic studies on Salmonella typhimurium diaminopropionate ammonia lyase reveal its unique features. J. Struct. Biol. DOI:10.1016/j.jsb.2017.12.012.
- Moonens et al. (2015) Structural insight in the inhibition of adherence of F4 fimbriae producing enterotoxigenic Escherichia coli by llama single domain antibodies. Veterinary Research 46:14.
- Zano et al. (2014) Structure of an unusual S-adenosylmethionine synthetase from Campylobacter jejuni. Acta Cryst. D 70:442.
- Goyal et al. (2013) Crystallization and preliminary X-ray crystallographic analysis of the curli transporter CsgG. Acta Cryst. F69:1349.
- Fujita et al. (2017) Structural Flexibility of an Inhibitor Overcomes Drug Resistance Mutations in Staphylococcus aureus FtsZ. ACS Chem. Biol. 12:1947.
- Weidenweber et al. (2017) Structure of the acetophenone carboxylase core complex: prototype of a new class of ATP-dependent carboxylases/hydrolases. Sci. Rep. 7:39674.
- Fujita et al. (2017) Identification of the key interactions in structural transition pathway of FtsZ from Staphylococcus aureus. J. Struct. Biol. 198:65.
- Wagner et al. (2016) The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe-4S] clusters. Science 354:114.
- Demmer et al. (2015) Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure. JBC 290:21985.
- Rekittke et al. (2015) Structure of the GcpE-HMBPP complex from Thermus thermophilius. Biochem. Biophys. Res. Commun.458:246.
- Uchida et al. (2014) Structure and properties of the C-terminal β-helical domain of VgrG protein from Escherichia coli O157. J. Biochem. 155(3):173.
- McDougall et al. (2019) Proteinaceous Nano container Encapsulate Polycyclic Aromatic Hydrocarbons. Sci. Rep. 9:1058.
- De Wijn et al. (2018) Combining crystallogenesis methods to produce diffraction-quality crystals of a psychrophilic tRNA-maturation enzyme. Acta Cryst F 74:747.
- Kumar et al. (2018) Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int. J. Biol. Macromol. 117:890.
- Leal et al. (2018) Crystal structure of DlyL, a mannose-specific lectin from Dioclea lasiophylla Mart. Ex Benth seeds that display cytotoxic effects against C6 glioma cells. Int. J. Biol. Macromol. 114:64.
- Sousa Cavada et al. (2018) Canavalia bonariensis lectin: Molecular bases of glycoconjugates interaction and antiglioma potential. Int. J. Biol. Macromolec. 106:369.
- Ernst et al. (2018) A comparative structural analysis of the surface properties of asco-laccases. PLOS ONEDOI:10.1371/journal.pone.0206589.
- Kumar et al. (2017) Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol. 13:54.
- Nascimento et al. (2017) Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int. J. Biochem. Cell Biol. 92:79.
- Cattani et al. (2015) Structure of a PEGylated protein reveals a highly porous double-helical assembly. Nat. Chem. 7:823.
- Boltsis et al. (2014) Non-contact Current Transfer Induces the Formation and Improves the X‑ray Diffraction Quality of Protein Crystals. Crystal Growth & Design 14:4347.
- Kampatsikas et al. (2017) In crystallo activity tests with latent apple tyrosinase and two mutants reveal the importance of the mutated sites for polyphenol oxidase activity. Acta Cryst. F 73:491.
- Kolek et al. (2016) A novel microseeding method for the crystallization of membrane proteins in lipidic cubic phase. Acta Cryst. F 72:307.
- Tan et al. (2014) A conformational landscape for alginate secretion across the outer membrane of Pseudomonas aeruginosa. Acta Cryst. D 70:2054.
- Li et al. (2014) Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy. Crystal Growth & Design 14:2034.
- Jacobs et al. (2012) Expression, purification and crystallization of the outer membrane lipoprotein GumB from Xanthomonas campestris. Acta Cryst. F 68:1255.
- Li et al.(2011) Crystallizing Membrane Proteins in Lipidic Mesophases. A Host Lipid Screen. Crystal Growth & Design 11(2):530.
- Shaw Stewart et al. (2011) Random Microseeding: A Theoretical and Practical Exploration of Seed Stability and Seeding Techniques for Successful Protein Crystallization. Crystal Growth & Design 11(8):3432.
- Caffrey et al. (2009) Crystallizing Membrane Proteins Using Lipidic Mesophases. Nat Protoc. 4:706.
- Cherezov et al. (2006) In Meso Structure of the Cobalamin Transporter, BtuB, at 1.95 Å Resolution. J. Mol. Biol. 364:716.