瑞士万通中国有限公司

化工仪器网顶级16

收藏

离子色谱在乙醇压力作用下对运动发酵单胞菌的转录组进行剖析

时间:2014-05-07      阅读:3680

Transcriptome profiling of Zymomonas mobilis under ethanol stress

离子色谱在乙醇压力作用下对运动发酵单胞菌的转录组进行剖析

Abstract

Background: High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli.

However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress.

Results: We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/ membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair,

transport, transcriptional regulation, some universal stress response, etc.

Conclusion: In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still

unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future.

上一篇: 比较不同pH 电极测量结果差异 下一篇: 高温水解条件下利用离子色谱同时测定煤炭中的卤素(氟、氯、溴、碘)
提示

请选择您要拨打的电话: