半年安装四台!生物型透射电子显微镜顺利落户国内多所院校
时间:2024-08-13 阅读:291
2024年截止目前,我司已连续完成军事兽医研究院、复旦大学、香港城市大学、中国海洋大学共计4台LVEM5与LVEM25生物型透射电子显微镜的安装落户工作。同时,我司工程师对客户进行了生物型透射电子显微镜的专业操作培训,客户均可以独立操作使用设备。
Delong Instrument公司推出的LVEM5&25生物型透射电子显微镜采用了5kV与25kV的低加速电压设计,对生物样品成像条件更加温和,摆脱了传统重金属染色在染色与负染过程本身可能对生物样品结构造成的损害,可以高效、高衬度地对生物与有机样品进行透射电镜成像。
军事兽医研究院LVEM25生物型透射电子显微镜
香港城市大学LVEM5生物型透射电子显微镜
中国海洋大学LVEM5生物型透射电子显微镜
复旦大学LVEM5生物型透射电子显微镜
LVEM5生物型透射电子显微镜对生物样品和有机纳米颗粒等轻质样品成像衬度高、操作便捷且无需负染等优势,将协助军事兽医研究院、复旦大学、香港城市大学、中国海洋大学等高校及科研院所提高其在生物、医学、药学、材料学等多个研究领域的科研观测水平,助力多学科、多领域的科研发展。
工程师现场安装调试LVEM5生物型透射电子显微镜
工程师在香港城市大学给师生培训LVEM5生物型透射电子显微镜
产品简介
Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25E)采用了5kV与25kV的低加速电压设计,为生物样品的电镜成像提供最为便捷高效的解决方案。
高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。
无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。
高分辨率:无染色条件下能够达到1.0 nm的图像分辨率。
高效方便:真空准备只需要5分钟,空间小,环境需求低。
易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。
LVEM生物型透射电子显微镜(LVEM5&25E)
部分高分文献:
[1] Babaei-Ghazvini A , Cudmore B , Dunlop M J , et al. Effect of magnetic field alignment of cellulose nanocrystals in starch nanocomposites: Physicochemical and mechanical properties[J]. Carbohydrate Polymers, 2020, 247:116688.
[2] Process Pathway Controlled Evolution of Phase and Van‐der‐Waals Epitaxy in In/In2O3 on Graphene Heterostructures[J]. Advanced Functional Materials, 2020.
[3] Sun C , Ma Q , Yin J , et al. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling[J]. Experimental & Molecular Medicine.
[4] Wang H , Maimaitiaili R , Yao J , et al. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis[J]. Hypertension, 2021.
[5] Weiss M , Fan J , Claudel M , et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential[J]. Journal of Nanobiotechnology, 2021, 19(1).
[6] Wang H, Wang T, Rui W, et al. Extracellular vesicles enclosed‐miR‐421 suppresses air pollution (PM2. 5)‐induced cardiac dysfunction via ACE2 signalling[J]. Journal of Extracellular Vesicles, 2022, 11(5): e12222.
[7] Su, Yu, et al. "Steam disinfection releases micro (nano) plastics from siliconerubber baby teats as examined by optical photothermal infrared microspectroscopy." Nature nanotechnology 17.1 (2022): 76-85.
[8] Hrapovic S, Martinez-Farina C F, Sui J, et al. Design of chitosan nanocrystals decorated with amino acids and peptides[J]. Carbohydrate Polymers, 2022, 298: 120108.
[9] Han, Dongni, et al. "Enhanced electrochemiluminescence at microgel-functionalized beads." Biosensors and Bioelectronics 216 (2022): 114640.
[10] Chen, Rui, et al. "Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy." Journal of Nanobiotechnology 20.1 (2022): 304.
[11] Pizzi, Andrea, et al. "Emergence of Elastic Properties in a Minimalist Resilin‐Derived Heptapeptide upon Bromination." Small 18.32 (2022): 2200807.
[12] Jiang J, Ni L, Zhang X, et al. Platelet Membrane‐Fused Circulating Extracellular Vesicles Protect the Heart from Ischemia/Reperfusion Injury[J]. Advanced Healthcare Materials, 2023, 12(21): 2300052.
[13] de Medeiros T V, Macina A, Bicalho H A, et al. Engineering the surface chemistry and morphology of polymeric carbon nitrides towards greener heterogeneous catalysts for biodiesel synthesis[J]. Small, 2023, 19(31): 2300541.
部分用户单位:
相关产品
1、低电压台式透射电子显微镜-LVEM5(生物领域)https://www.chem17.com/st166724/product_10386367.html