3月25日《上海交通大学吴争鸣博士为您带来热扫描探针光刻技术全面解析》
时间:2021-03-23 阅读:944
报告简介:
随着热扫描探针光刻技术的进步完善和发展,众多的科研课题得到快速发展,例如2D材料器件的加工,热辅助的材料变性,3D纳米光学器件和3D纳米光栅,纳米颗粒组装,运输以及分离,高精度纳米结构以及套刻,生物组织的复制用于干细胞生长研究等。为了使国内更多的老师和同学们了解NanoFrazor的*功能以及在物理实验纳米器件制备等方面的应用,2021年3月25日 中国时间16:15由海德堡Nano的吴争鸣博士用中文讲解NanoFrazor的技术点、点和些应用案例介绍。NanoFrazor技术起源于IBM苏黎世,由Swiss Litho公司将该技术商业化,并生产制造用于研究的Explore和Scholar仪器。所使用的软件和硬件都是基于NanoFrazor的点量身打造。2年前Swiss Litho加入Heidelberg Instruments为科学研究以及工业生产提供覆盖纳米到微米尺度、从热探针到激光直写的2D+3D微纳加工方法。欢迎老师同学们参加讲座并且和吴博士讨论。
报名注册:
PC端用户点击https://zoom.us/webinar/register/WN_IuOs0YKQRFy6NnzuAVyF3g报名 ,手机用户请扫描上方二维码进入报名
主讲人介绍:
吴争鸣毕业于上海交通大学,随后在瑞士巴塞尔大学物理系师从Schoenenberg教授完成硕士和博士。2009年加入Nanosurf搭建AFM亚洲区销售网络。2014年在Swiss Litho公司成立初期加入,对NanoFrazor的技术、适用性和在纳米制备方面的应用都有非常透彻的了解。
报告时间:
2021年3月25日 09:15 CEST(北京时间16:15)
讲座环节: 30 min
问答环节: 15 min
您将了解:
☛ 了解NanoFrazor技术的*性能和点
☛ 探讨NanoFrazor应用案例和用于纳米制备的适用范围
☛ 了解NanoFrazor用户们使用仪器的实验课题以及受益于仪器的哪些殊功能
☛ 展望NanoFrazor技术的发展计划
近期NanoFrazor用户的发表文章列表以供参考:
1. 2020_Howell (Nature Micro Nano) Thermal Scanning Probe Lithography - A Review. https://doi.org/10.1038/s41378-019-0124-8
2. 2019_NF_Ryu (NanoScience and Technology) Oxidation and Thermal SPL review_MoS2 ribbons
3. 2020_NF_Meng (Adv. Mater.) Deterministic Assembly of Single Sub-20 nm Functional Nanoparticles Using a Thermally Modified Template with a Scanning Nanoprobe. https://doi.org/10.1002/adma.202005979
4. 2020_NF_Michel (Adv. Opt. Mat.) The Potential of Combining Thermal Scanning Probes and Phase-Change Materials for Tunable Metasurface. https://doi.org/10.1002/adom.202001243
5. 2020_NF_Liu (NanoLetter)_Thermomechanical Nanostraining of Two-Dimensional Materials. https://dx.doi.org/10.1021/acs.nanolett.0c03358
6. 2020_NF_Zheng (Nat Comm)_Spatial defects nanoengineering for bipolar conductivity in MoS2. https://doi.org/10.1038/s41467-020-17241-1
7. 2020_NF_Liu (Advanced Materials) Thermomechanical Nanocutting of 2D Materials. https://doi.org/10.1002/adma.202001232
8. 2019_NF_Zheng (Nature Electronics) Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using tSPL. https://doi.org/10.1038/s41928-018-0191-0
9. 2020_NF_Lassaline (Nature) Optical Fourier Surfaces. https://doi.org/10.1038/s41586-020-2390-x
10. 2018_NF_Skaug (Science) Nanofluidic rocking Brownian motors. DOI: 10.1126/science.aal3271
11. 2018_NF_Schwemmer (PRL) Experimental Observation of Current Reversal in a Rocking Brownian Motor. DOI: 10.1103/PhysRevLett.121.104102
12. 2019_Fringes (Nano Lett. 8855-8861) Deterministic Deposition of Nanoparticles with Sub-10nm Resolution. https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b03687
13. 2019_NF_Hettler (Micron) Phase masks for electron microscopy fabricated by thermal scanning probe lithography
14. 2017_NF_Rawlings (Nature Scientific Reports) Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. DOI:10.1038/s41598-017-16496-x
15. Cheng, B. et al. Ultra compact electrochemical metallization cells offering reproducible atomic scale memristive switching. Communications Physics 2, 28 (2019). https://www.nature。。com/articles/s42005-019-0125-9
16. 2021_NF_ Liu (Adv. Func Mat) Cost and Time Effective Lithography of Reusable Millimeter. https://doi.org/10.1002/adfm.202008662
17. Tang (ACS App.Mat&Inetrf 2019) Replication of a Tissue Microenvironment by Thermal Scanning Probe Lithography. https://pubs.acs.org/doi/abs/10.1021/acsami.9b05553
18. Liu (Faraday Discussions 2019) High-throughput Enzyme Nanopatterning
19. 2020_NF_Albisetti (Adv Mat) Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets. https://doi.org/10.1002/adma.201906439
20. Albisetti, E. et al. Stabilization and control of topological magnetic solitons via magnetic nanopatterning of exchange bias systems. Appl. Phys. Lett. 113, 162401 (2018). https://doi.org/10.1063/1.5047222
21. Albisetti, E. et al. Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Communications Physics 1, 56 (2018). DOI: 10.1038/s42005-018-0056-x