上海茂硕机械设备有限公司

化工仪器网中级14

收藏

漫谈离心泵叶轮的优化设计

时间:2023-05-12      阅读:434

有朋友希望我谈一谈离心泵叶轮的优化设计。为此,首先必须要弄清楚优化的目的:改善吸入性能?提高泵的效率?调整Q-H曲线的上升幅度……其次再根据具体需要进行优化。

影响离心泵性能的主要水力零件是叶轮,另外,还包括与其配合的蜗壳/导叶等过流零件。其实,对于离心泵叶轮的优化设计,作者在微信公众号《泵沙龙》里不少文章中都有部分涉及,如:《全面理解汽蚀及其对离心泵的影响》、《全面理解离心泵吸入比转速》、《叶轮几何参数对离心泵性能的影响》等等。

流体机械属于一门半理论、半经验的学科,还存在很多无法准确设计/模拟/预测的地方,例如不同结构、不同温度、不同泵送介质下无法准确地模拟出流体真实的流态及其对泵性能的影响。因此,本文只能从定性的角度、结合经验及同行们的研究成果来简要谈一谈如何优化离心泵的叶轮来改善泵的吸入性能和水力性能。仅供参考。

经常会看到来自各种专家的期刊文章,介绍汽蚀所造成损伤的类型、原因和解决方案。然而,对于普通工程师和现场操作人员来说,汽蚀现象的诊断及避免/消除并不简单,往往很难纠正。

叶轮叶片有两种弯曲型式:前弯曲和后弯曲。由于后弯叶片叶轮在动力、赋予流体高旋转力及防止脱流方面更有效,因此离心泵通常均采用后弯曲叶片叶轮。

对于泵本体来说,泵的汽蚀行为和吸入性能在很大程度上受叶轮入口(eye处)的几何形状及面积的影响。叶轮入口处的许多几何因素都会影响汽蚀,例如入口和轮毂直径、叶片进口角和上游液流的入射角、叶片数量和厚度、叶片流道喉部面积、表面粗糙度、叶片前缘轮廓等。另外,还与叶轮叶片外径和导叶(对于导叶式泵)或蜗舌(对于蜗壳式泵)之间的间隙大小相关。

多年来,许多作者研究并报告了上述一些因素对泵汽蚀的影响。在 Schiavello 和 Visser(2008年) 文献中可以找到涵盖汽蚀所有方面的优秀教程。Palgrave 和 Cooper,1986 年,对汽蚀进行了视觉研究,并提出了基于入口角和入口直径估计 NPSHi 的一般表达式。Schiavello等人,1989年,对汽蚀试验台进行了视觉研究,并比较了具有不同叶尖与轮毂无冲击的叶轮设计对其吸入性能的影响。Hergt等人,1996年,记录了不同叶轮直径、叶片入口角度和叶片数量的叶轮的吸入性能。

1)叶轮入口直径/入口面积

为了改善离心泵的吸入性能,设计人员普遍通过加大叶轮入口直径的方法来实现。今天,这种设计方法在离心泵的工程设计中还在一直使用。

在轴径相同、叶轮口环处的直径间隙相同的情况下,吸入性能越好(叶轮入口面积越大,吸入比转速值越高),则叶轮口环处的间隙面积越大,这意味着泄漏量越大,而泵的效率就越低。

不过,对于通过加大叶轮入口直径来改善吸入性能的方法,必须特别注意:不能导致吸入比转速值严重超出相关标准规范(如UOP 5-11-7)规定的值,否则将导致泵的稳定运行区间变得很窄。

2)叶片前缘形状

Ravi Balasubramanian等对不同的叶轮叶片前缘形状进行了研究,结果表明,只要满足前缘叶片厚度的机械和制造约束,采用抛物线轮廓可以提高叶轮的吸入性能。椭圆轮廓的吸入性能次之,该形状是前缘的默认轮廓选择,因为此轮廓可以轻松满足叶片前缘厚度的机械和制造限制[1]

3)叶轮盖板进口部分的曲率半径

由于叶轮进口部分的液流在转弯处受到离心力作用的影响,靠前盖板处压力低、流速高,造成叶轮进口速度分布不均匀。适当增加盖板进口部分的曲率半径,有利于减小前盖板处(叶片进口稍前)的绝对速度和改善速度分布的均匀性,减小泵进口部分的压力降,从而降低NPSHR,提高泵的抗汽蚀性能。

4)叶片进口边位置和进口部分形状

叶片进口边轮毂侧向吸入口方向延伸,即采用后掠式的叶片进口边(进口边不在同一轴面,外缘向后错开一定的角度),可使轮毂侧液体流能够提前接受叶片的作用、并增加压力。

叶片进口边前伸并倾斜,使得各点的圆周速度不同,一般轴面速度沿进口边近似均匀分布,则进口边各点的相对液流角不同。为了符合这种流动情况,减小冲击损失,叶片进口应做成空间扭曲形状,这就是目前很多低比转速叶轮叶片进口部分也做成扭曲叶片的原因[2]

5)叶片进口冲角

设计工况采用稍大的正冲角,以增加叶片的进口角,减少叶片进口处的弯曲,减少叶片的排挤,增加叶片进口过流面积,从而改善吸入性能。同时,还会改善大流量下的运行环境,以减少流量损失。但是,冲角不能太大,否则会影响效率[3]

6)叶片入口厚度及光洁度

适当减小叶片入口的厚度,并对叶片入口进行修圆,使其接近流线型。减小叶片厚度不仅会扩大叶轮吸入流道的面积、降低流速、增加压力(叶片进口形状对压降影响十分敏感),而且使叶轮和叶片入口部分的表面光洁度得到改善、减少阻力损失。这些措施均有利于改善泵的吸入性能。

7)平衡孔

叶轮上的平衡孔,其中的泄漏对进入叶轮的主流起到一定的破坏作用(平衡孔面积应不小于密封间隙面积的5倍,以减小泄露流速,从而减小对主流的影响)。研究表明,在叶轮上开平衡孔时,将使叶轮后侧的涡流强度降低,其中一些涡流甚至消失,泵的吸入性能得到改善[4]

8)叶轮出口直径

叶轮直径的小幅度减小只会略微增加NPSHR。但当直径减小5% 至10%时, NPSHR将明显增加,这是因为叶片长度减小会增加特定的叶片载荷,从而影响叶轮入口处的速度分布。

注意事项:

1)尽量避免采用加大叶轮入口面积的方法来改善吸入性能 - 避免吸入比转速严重超标【如,对于BB2型泵,通常控制在14400(m3/h, m)以内】[5],否则极易引起入口回流,导致泵不稳定运行区域扩大。

2)应避免出现叶片流道综合症汽蚀。这种汽蚀破坏是由于导叶(对于导叶式泵)或蜗舌(对于蜗壳式泵)与叶轮叶片外径之间的间隙太小所引起的。当液体流经该小通道时,液体的流速增加引起液体压力的下降、局部汽化,产生汽泡,然后在较高的压力下破裂,导致汽蚀。

上一篇: 变压器吊芯操作规程 下一篇: 欧姆龙——以特别的哲学成功,曾经超越罗克韦尔自动化。
提示

请选择您要拨打的电话: