基于STM32的数字示波器
时间:2012-02-14 阅读:1549
数字示波器的硬件设计 信息来源:http://www.365zhanlan.com
系统硬件总体框图
系统硬件总体框图如图1所示,主要由STM32控制单元,信号输入阻抗匹配单元,信号调理单元,A/D采样与FIFO存储单元,时钟单元,TFT显示单元等组成。输入信号经阻抗匹配后,送入信号调理单元,将信号的幅度放大或衰减到适合A/D采样的范围内,A/D采样单元对幅度为2VPP的信号进行A/D采样,并将采样结果存入FIFO单元中。CPU从FIFO中读存数据并进行内插运算,然后根据用户通过键盘输入的指令将信号波形显示在TFT液晶屏上。另外,CPU还可以将数据通过RS232接口上传给上位机,或进行打印等处理。
输入阻抗匹配电路
对于低速数据采集,由于信号反射对信号的传输过程影响微乎其微,所以低速数据采集系统良好的高阻抗性能,对提高系统的测量度有很大的意义。本设计中采用电压跟随器实现阻抗变换,数据采集阻抗变换电路的设计方案如图2所示,其输入阻抗为10MΩ。
信号调理电路
信号调理电路主要采用具有可变增益的数字程控放大器AD8260。AD8260是AD公司生产的一款大电流驱动器及低噪声数字可编程可变增益放大器。该器件增益调节范围为-6dB~+24dB,可调增益的-3dB带宽为230MHz,可采取单电源或双电源供电。主要用于数字控制自动增益
系统、收发信号处理等领域。本设计主要使用其数字控制自动增益功能。AD8260内部的数字程控增益功能框图如图3所示。经阻抗匹配后的信号可直接输入AD8260的17、18脚,经AD8260内部前端放大器6dB的固定增益放大,-30dB程控衰减以及末级放大器18dB固定增益放大后,由7和8脚输出。第11、12、13、14脚为四位数字控制信号(D0、D1、D2、D3),与STM32的I/O口直接连接,实现增益控制。表3给出了AD8260增益调节真值表。 信息来源:www.365zhanlan.com
/D和FIFO电路 信息来源:http://365zhanlan.com
在数据采集电路设计中,选用BB公司的8位高速AD转换器ADS830E,zui高采样频率为60MSa/s,zui低采样频率为10kSa/s。8位转换精度的显示分辨率为256格,能够满足所选用分辨率为640*480的TFT显示模块。FIFO存储器采用IDT7204高速缓存,其缓存深度达1024K。FIFO存储器是一种双口的SRAM,没有地址线,随着写入或读取信号对数据地址指针进行递加或递减,来实现寻址。
2.5时钟电路
时钟产生电路为AD转换器提供一系列的采样时钟信号,共有8种频率,分别对应着不同的水平扫速。时钟产生电路主要由高稳定度的温补晶振,分频器74LS390,多路选择器74F151以及分频器74F74触发器构成。基准时钟信号由一块60MHz的温度补偿型有源晶体模块提供,输出的60MHz信号经过分频器的多次分频得到8种不同的频率,然后送入多路选择器74F151。STM32通过对74F151的三根选通信号线进行控制来选择所需的采样频率。另外,中央控制器采用STM32处理器,主频设为80MHz。显示器采用分辨率为640*480的TFT显示模块,与STM32之间采用SPI接口。与其它上位机通信采用RS232口。
3、系统软件设计
系统软件设计采用模块化设计方法,整个程序主要由初始化程序、人机交互菜单程序、键盘扫描程序、触发程序、显示程序和数据采集及频率控制程序组成。系统软件的流程图如图4所示。
实验测试
在实验室对研制的样品机进行了测试实验,图5和图6分别显示了频率为16.2kHz和1kHz的方波信号。由测试数据分析可得:垂直灵敏度满足要求,电压测量误差≤5%,输入端输入阻抗大于2MΩ,实验结果达到了设计要求。
结束语
近年来,随着国内电子信息产业和电子技术的不断发展,催生了庞大的数字示波器市场需求。数字示波器在信号显示,处理以及带宽等方面比传统模拟示波器更有优势,因此数字示波器是今后示波器发展的重要方向。本文采用STM32高性能ARM处理器作为核心控制芯片,能够满足TFT彩色波形显示,数字插值算法处理等。通过采用高速AD和FIFO器件,实现了高采样率,宽频带的技术要求。实验室测试结果表明本文的设计是正确的,各项指标均达到设计要求。