仪器仪表的雷电防护技术二
时间:2012-12-24 阅读:371
静电放电(ESD)和电快速瞬变脉冲群(EFT)对仪器仪表系统会产生不同程度的危害。静电放电在5~200MHz的频率范围内产生强烈的射频辐射。此辐射能量的峰值经常出现在35MHz~45MHz之间发生自激振荡。许多信息传输电缆的谐振频率也通常在这个频率范围内,结果电缆中便串入了大量的静电放电辐射能量。电快速瞬变脉冲群也产生相当强的辐射发射,从而耦合到电缆和机壳线路。当电缆暴露在4~8kV静电放电环境中时,信息传输电缆终端负载上可以测量到的感应电压可达到600V,这个电压远远超出了典型数字仪器仪表的门限电压值0.4V,典型的感应脉冲持续时间大约为400纳秒。仪器仪表在使用中经常会遇到意外的电压瞬变和浪涌,从而导致电子设备的损坏,损坏的原因是仪器仪表中的半导体器件(包括二极管、晶体管、可控硅和集成电路等)被烧毁或击穿。据统计仪器仪表的故障有75%是由于瞬变和浪涌造成的。电压的瞬变和浪涌无处不在,电网、雷击、爆破,就连人在地毯上行走都会产生上万伏的静电感应电压,这些,都是仪器仪表的隐形致命杀手。因此,为了提高仪器仪表的可靠性和人体自身的安全性,必须对电压瞬变和浪涌采取防护措施。
1.防雷端口根据仪器仪表应用的工程实践,仪器仪表受雷击可大致分为直击雷、感应雷和传导雷。但不论以哪一种形式到达设备都可归纳为从以下4个部位侵入的雷电浪涌,在此把这些部位称为防雷端口,并以仪器仪表举例说明。
1.1外壳端口比如说,我们可以把任何一个大的或小的仪器仪表或系统视为一个整体的外壳,如传感器、传输线、信号中继、现场仪表、DCS系统等,它们都有可能*暴露在环境中受到直接雷击,造成设备损坏。标准规定,当设备外壳受到4kv的雷电静电放电时,都会影响仪器仪表或系统的正常运行。例如放置于室外的传感器端子箱有可能受到雷电接触放电;位于机房内的DCS机柜有可能受到大楼立柱泄流时的空气放电。
1.2信号线端口(含天馈线、数据线、控制线等)在控制系统中,为了实现信号或信息的传递总要有与外界连接的部位,如过程控制系统的信号交接端的总配线架、数据传输网的终端、微波设备到天线的馈线口等等,那么这些从外界接收信号或发射信号出去的接口都有可能受到雷电浪涌冲击。因为从楼外信号端口进来的浪涌往往通过长电缆,所以采用10/700μs波形,标准规定线到线间浪涌电压为0.5kV,线到地间浪涌电压为1kV。而楼内仪器仪表之间传递信号的端口受到浪涌冲击相当于电源线上的浪涌冲击,采用1.2/50(8/20)μs组合波,线到线、线到地浪涌电压限值不变。一旦超过限值,信号端口和端口后的设备有可能遭受损坏。
1.3电源端口电源端口是分布zui广泛也zui容易感应或传导雷电浪的部位,从配电箱到电源插座这些电源端口可以处在任何位置。标准规定在1.2/50(8/20)μs波形下线与线之间浪涌电压限值为0.5kV,线到地浪涌电压限制为1kv。但这里的浪涌电压是指明工作电压为220V交流进入的,如果工作电压较低则不能以此为标准,电源线上受较小的浪涌冲击不一定立即损坏设备,但至少寿命有影响。
1.4接地端口尽管在标准中没有专门提到接地端口的指标,实际上信息技术设备地端口是非常重要的。在雷电发生时接地端口有可能受到地电位反击、地电位升高影响,或者由于接地不良、接地不当使地阻过大达不到参考电位要求使设备损坏。接地端口不仅对接地电阻/接地线极(长度、直径、材料)、接地方式、地网的设置等有要求,而且还与设备的电特性、工作频段、工作环境等有直接的关系。同时从接地端还有可能反击到直流电源端口损坏直流工作电压的设备。综上所述,信息技术设备的防雷可以考虑从四个关键的端口入手