北京锦正茂科技有限公司

化工仪器网中级14

收藏

霍尔效应的研究前景

时间:2023-01-30      阅读:1292


整数量子霍尔效应的机制已经基本清楚,而仍有一些科学家,如·克利青纽约州立大学石溪分校V·J·Goldman,还在做一些分数量子效应的研究。一些理论学家指出分数量子霍尔效应中的某些平台可以构成非阿贝尔态(Non-Abelian States),这可以成为搭建拓扑量子计算机的基础。

石墨烯中的量子霍尔效应与一般的量子霍尔行为大不相同,称为异常量子霍尔效应(Anomalous Quantum Hall Effect)。此外,Hirsh、张首晟等提出自旋量子霍尔效应的概念,与之相关的实验正在吸引越来越多的关注。

中国科学家发现量子反常霍尔效应

《科学》杂志在线发文,宣布中国科学家领*的团队首*在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。

这一发现由清华大学教授、中国科学院院士薛其坤(原曲阜师范大学物理工程学院教师)*衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是基础研究领域的一项重要科学发现。

美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯·克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。

中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。

量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完*体现。1980年,德国科学家冯·克利青(Klaus von Klitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦(Daniel CheeTsui)、美国物理学家施特默(Horst L. Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(Rober B. Laughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”——不需要外加磁场的量子霍尔效应。

“量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有*不同的物理本质,是一种全新的量子效应;同时它的实现也更加困难,需要精准的材料设计、制备与调控。1988年,美国物理学家霍尔丹(F. Duncan M. Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。

2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329, 61(2010)]。他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。该理论与材料设计的突破引起了国际上的广泛兴趣,许多实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。

在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了*的要求:材料必须具有铁磁长程有序;铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构;同时体内的载流子浓度必须尽可能地低。中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。他们克服了薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,利用分子束外延方法生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功地观测到了“量子反常霍尔效应”。该结果于2013年3月14日在Science上在线发表,清华大学和中科院物理所为共同第一作者单位。

该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功*。前期,团队成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十*进展和中国高校*科技进展,团队成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了中国科学院、科技部、国家自然科学基金委员会和教育部等部门的资助。

量子反常霍尔效应 将为我们带来什么

与量子霍尔效应相关的发现之所以屡获学术大奖,是因为霍尔效应在应用技术中特别重要。人类日常生活中常用的很多电子器件都来自霍尔效应,仅汽车上广泛应用的霍尔器件就包括:信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器等。

此次中国科学家发现的量子反常霍尔效应也具有*的应用前景。量子霍尔效应的产生需要用到非常强的磁场,因此至今没有广泛应用于个人电脑和便携式计算机上——因为要产生所需的磁场不但价格昂贵,而且体积大概要有衣柜那么大。而反常霍尔效应与普通的霍尔效应在本质上*不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转,反常霍尔电导是由于材料本身的自发磁化而产生的。

如今中国科学家在实验上实现了零磁场中的量子霍尔效应,就有可能利用其无耗散的边缘态发展新一代的低能耗晶体管和电子学器件,从而解决电脑发热问题和摩尔定律的瓶颈问题。这些效应可能在未来电子器件中发挥特殊作用:无需高强磁场,就可以制备低能耗的高速电子器件,例如极低能耗的芯片,进而可能促成高容错的全拓扑量子计算机的诞生——这意味着个人电脑未来可能得以更新换代。



上一篇: 锦正茂硅二极管温度传感器的主要技术参数 下一篇: JZM-1200真空热压烧结炉的用途及主要技术参数
提示

请选择您要拨打的电话: