迪图(上海)生物科技有限公司

化工仪器网中级21

收藏

PCR工作机制

时间:2023-08-18      阅读:493

PCR的工作机制
 
PCR由一系列复杂的化学反应,包含前、中、后三个阶段。最重要的化学变化是热循环期间的产物合成。每次循环后产物、模板、聚合酶、引物和脱氧核苷酸的余量都会改变,处于连续的不稳定状态。所有的循环都是从模板和先前产物的变性开始。当温度较低时,引物退火到模板上。
 
早先若干循环的退火步骤要求引物寻找正确的染色体模板作为它们的目标。在中期的循环中,先前合成的产物优先成为模板。最后几个循环中,增扩后的高浓度产物互相杂交,由此阻止与引物的杂交。
引物退火后,Taq DNA聚合酶把自己定位到引物和模板综合体上,提取介质中的自由dNTPs然后沿着模板延伸。从本质上讲,引物和模板的任何反应都会造成产物扩展,它们的特异性在最初的几个循环中可能很难控制,得到非特异性产物的摩尔量超过在模板上正确退火位置的量。PCR反应特异性的可靠度依赖于2个引物必须定位到互补的DNA链上。进一步讲,退火温度和Mg2+离子的浓度影响引物稳定的杂交到模板上,杂交位置间距应小于10kb。
 
相比之下,增扩阶段的大部分循环里,模板被很好的与先前增扩的片段区分开。这些片段的数量取决于早先若干个循环的严密性。甄选同源性引物的退火位置是较简单的,增扩期间由染色体DNA贡献的有效的模板数量只是可以忽略一小部分。甄选的复杂性被超量由引物从互补位点新增扩的片段所降低。
 
PCR的化学计量
 
热力学方面的影响对PCR来讲是试剂浓度和模板间的对应关系。在起先的循环中PCR试剂的摩尔比率是最高的,随着PCR产物的增加而降低。令人惊讶的是这种减低是由增扩的目标分子的增加引起的而不是由于试剂的消耗。最初剩余的引物和脱氧核苷酸与模板的比率是固定的,反应结束后,dNTP的浓度下降超过1倍,引物任然剩余95%,Taq DNA聚合酶没有变化。增扩千万倍目标分子后,模板分子远多于酶分子。当产物增加后,酶全部被占用了,引物和模板的比率减低,推动自身退火。当自身退火的数量增加或酶的总量有时,反应处于饱状态并停止指数级的增长。增扩阶段是自我受限的。这个阶段之后,热循环转向未在最初几个循环中被选择的欺骗性的目标增扩,尽管能够通过提高开始时Taq DNA聚合酶和引物的含量来维持高试剂比率,但这种修改很可能引起丢失特异性因为引物会胡乱杂交,出现额外的条带和斑点。
 


上一篇: PCR实验操作程序介绍 下一篇: CO2二氧化碳培养箱使用注意事项
提示

请选择您要拨打的电话: