金属封闭高压开关柜的智能化技术
时间:2013-11-03 阅读:1633
配、变电网的自动化是今后发展方向。为了对配、变电网进行运行监控和管理、运行计划模拟和优化、运行分析和管理、用户负荷监控和故障报警,配、变电网主站需要获取现场一次设备(成套中压开关设备、断路器及变压器等)信息,同时也需要一次设备不但能执行远地主站命令,而且也能就地完成合、分闸等命令,因此要求中压开关柜(即一次系统)提高智能化程度。
另外,计算机技术及电磁兼容性(EMC)水平提高(即能抗强电磁干扰),信息传感技术、微电子技术、通信及数据处理技术的普遍应用和发展,也促进了成套中压开关设备智能化进程。
智能化中压开关设备主要由硬件与软件组成:(1)可控操作的高可靠开关设备;(2)测控保护装置具有保护、测量、监视、控制及通信等功能;(3)在线检测装置可对SF6断路器、油断路器、其它电器设备及环境等进行实时监测;(4)先进的传感器可实现各种信号可靠转换;(5)中压开关柜的结构紧凑、小型化。
智能化测控装置的核心器件是微处理机,装置充分利用数字技术和软件技术,将保护、监视、控制、测量与通信集于一身,在相同的硬件环境下,可实现多种功能。
(1)基本保护功能:有方向或无方向的过流和接地故障保护;低周减载保护;自动重合闸功能(后加速);零序电压、过电压和低电压保护;断路器失灵保护;电流速断、*速断及反时限过流保护。
(2)控制功能:保护跳闸、合闸,远方、就地控制,各种信号控制及控制对象的显示等。
(3)测量电量功能:可测量相电流、相间和相对地电压、零序电压和电流、频率、有功功率、无功功率、功率因数和电能等。
(4)通信功能:可完成与PC机就地通信或通过变电站通信系统与远方通信,装置一般可支持modbus协议和标准通信规约IEC870—5—101(103)、DNP3.0、TCP/IP等;串行标准接口RS232、RS485,工业现场总线CANBUS、Lonworks等,以太网接口;支持多种通信介质如双绞线、光纤及无线等。
(5)监视功能:断路器状态监视、跳、合闸回路监视和本机运行自检。
故障记录和录波功能:可记录故障类型、发生时间及故障量zui大/zui小值,也可对故障波形进行记录。
一台具有计量、控制、保护及通信等全部功能的智能化测控保护装置安装于开关柜上时,二次接线工作十分简洁,智能化测控保护装置与外部单元接线见图1。用户仅需将电压、电流信号,断路器状态位置信号和出口控制信号等与开关柜内相应一次元件的端子相连即可。
智能化测控保护装置通过采集电压、电流信号,断路器状态信号及其它输入的开关量信号,接地故障状态,独立完成数据处理,实现保护、控制及显示故障纪录功能,同时通过通信接口完成信息上传。因此与传统二次技术相比,智能化测控保护装置不但功能更多、精度更高,而且二次接线更简洁。
由于高压电器设备在电网中的重要性,一旦发生事故,将引起局部或较大地区的停电,会造成巨大的经济损失和社会影响,因此这些设备运行一段时间后或运行中,必须进行必要的检查和维护。迄今为止,电力部门一直采用传统的维护方式:即定期维护技术,所谓定期维护是经过规定的一段时间(比如5年),对设备进行规定项目维护,这些项目是设备检查、更换零部件、解体检查等。应该说:这种定期维护技术对减少和防止设备的故障发生起到了良好的作用,但是这种定期维护方式存在不少缺陷,例如在设备解体检查时,需要对断路器及电器设备的一部分进行解体,不但作业时需要停电,而且视其项目还需要可观费用,另外停电后设备状态(如温度、作用电压等)和设备运行中的状态不一致,会影响一些数据判定。
由于定期维护技术存在许多缺点,另一方面随着科学技术发展,电子技术、光传感技术、计算机技术、信号处理技术的发展,使传统的定期维护技术向预见性维护方式,即按状态维护方式过渡。
与传统定期维护技术相比,按状态维护技术具有如下优点:
(1)按状态维护技术的基本点是对设备在运行状态下实时监测及判断,因此可避免定维护所造成的浪费及其它缺点;
(2)按状态维护技术是以信息技术为基础,采用自动管理技术来达到合理延长设备使用寿命,因此可降低设备运行的总费用。
图2是加拿大WinnipegManitoba附近的Dorsey试验站中高压SF6断路器的在线检测系统。在试验断路器上安装了各种类型的传感器,实现了电能、机械、SF6气体在线监测,且已得出了许多有价值的结果。3.2在线监测项目
(1)断路器机械、电器性能监测。如合、分闸线圈电流、操动机构特性、触头行程和速度、振动信号监测。
(2)中压开关柜内母线联结处温升检测。
如果高压断路器的操作机构是电磁操动机构,其合、分闸线圈一般由直流电源供电,见图3。经验表明:合、分闸线圈的电流可以作为诊断机械故障的信息,合、分闸线圈的电流讯号可由补偿式霍尔电流传感器给出,给出的合、分闸线圈的电流讯号也示於图3。
图中是起始时刻,是合、分过程计时起点,t1为线圈中电流、磁通上升到足于驱动铁心运动,即铁心开始移动的时刻;t2为铁心已触动(开始)操作机构负载,这也是开关触头开始运动的时刻;t3为开关辅助接点切断电源,即电磁线圈回路断开的时刻。利用比较电流波形的变化或差异可以诊断出操作机构的故障程度。3.3.2行程、速度的监测
断路器触头刚分速度对灭弧性能影响很大,适当提高刚分速度对减少电弧能量、减少零部件的烧损有很大作用,但过分增大刚分速度不一定能提高灭弧性能,反而会加重操动机构的负担;同样断路器触头合闸速度对灭弧性能也有很大影响。因此,对断路器触头的行程、速度特性的测量及在线监测是很重要的。为了完成正确测量,必须选取合适的位移传感器。
可以选择旋转光编码传感器。利用增量式旋转光编码传感器可以完成转动角度及方向的测量,一般把旋转光编码传感器安装在断路器操动机构的转轴上。
增量式旋转光编码一般有3个码道(A道,B道,Z道),A道与B道相差90°,每周的码条数可以根据测量分辨率选取,Z道每周一条,用来确定旋转次数。当轴转动时,编码器输出A道、B道两路相差90°角的正交脉冲,输入信号处理电路,从A道、B道两信号的相对位置可确定转轴的转动方向,如果A道先于B道,为正旋转,而B道先于A道,为反旋转。再通过加、减计数器对A道、B道两路信号计数,能得到转动角度大小及方向,从而可以测出断路器运动部分运动及反弹情况,可以计算出动触头行程;分合闸同期性;平均速度;超行程;刚分后或刚合*ms内速度(主要是平均速度,zui大速度)等。