SAMSON阀门定位器作用
时间:2016-04-06 阅读:848
SAMSON阀门定位器作用优惠供应德国萨姆森SAMSON阀门定位器、执行器、调节阀、气动、电动调节阀、自立式阀门(温差压、流量、压力控制),调节阀附件、限位开关、位置变送器、电磁阀、气源过滤减压器和气动控制显示二次仪表等。
SAMSON产品气动和电动定位器 3760型,4765/4763型和3766/3767型气动和电动阀门定位器用于连接气动调节阀,气动定位器的参考变量为标准的气动信号0.2至1巴,电动定位器的电信号为4至20MA。 3760型定位器与3277型执行器直接连接; 4765/4763型定位器按DIN IEC 534标准进行连接; 3766/3767型单或双动作定位器可与3277型执行器直接连接,按DIN IEC 536标准连接或按VD/VDE 3845标准连接 旋转执行器; 3761防爆型定位器带6116型I/P转换器 3761型单或双动作定位器用于按VDI/VDE 3845标准连接旋转执行器。 阀门定位器 4763阀门定位器 3787阀门定位器 3785阀门定位器 3780阀门定位器 3766/3767阀门定位器 3761阀门定位器 3760阀门定位器 3730-1阀门定位器 3730-2阀门定位器 3730-3阀门定位器 3730-4阀门定位器 3730-5阀门定位器 I/P转换器6102电气转换器 6112电气转换器 6116电气转换器 开关和电磁阀 4746限位开关 4744限位开关 3776限位开关 3775限位开关 3768限位开关 4708调节器 3701电磁阀 3709气动阀 3770隔离栅 自力式控制阀。
SAMSON阀门定位器作用有以下几种方法详细介绍如下,如有不明白之处请随时当中。
(1)改善阀的稳态特性采用阀门定位器后,只要控制器输出信号稍有变化,经过喷嘴一挡板系统及放大器的作用,就可使通往控制阀膜头的气压大有变动,以克服阀杆的摩擦和消除控制阀不平衡力的影响,从而保证阀门位置按控制器发出的信号正确定位。改善稳态特性后,能使控制阀适用于下列情况:①要求阀位作调整的场合;②大口径、高压差等不平衡力较大的场合;③为防止泄漏而需要将填料函压得很紧,例如高压、高温或低温等场合;④工艺介质中有固体颗粒被卡住,或是高黏滞的情况。
(2)改善阀的动态特性定位器改变了原来阀的一阶滞后特性,减小时间常数,使之成为比例特性。一般说来,如气压传送管线超过60m时,应采用阀门定位器。
(3)改变阀的流量特性通过改变定位器反馈凸轮的形状,可使控制阀的线性、对数、快开流量特性互换。
(4)用于分程控制用一个控制器控制两个以上的控制阀,使它们分别在信号的某一个区段内完成全行程移动。例如,使两个控制阀分别在4~12mA直流电流及12~20mA直流电流的信号范围内完成全行程移动。
(5)用于阀门的反向动作阀门定位器有正、反作用之分。正作用时,输入信号增大,输出气压也增大;反作用时,输入信号增大,输出气压减小。采用反作用式定位器可使气开阀变为气关阀,气关阀变为气开阀。
在众多的控制应用场合中,阀门定位器是调节阀zui重要的附件之一。尤其是对于某个特定的应用场合,如果要选择一个zui适用的(或者说*的)阀门定位器,那么就应注意考虑下列SAMSON阀门定位器作用
因素:
1)阀门定位器能否实现“分程(Split_ranging)”?实现“分程”是否容易、方便?具备“分程”功能就意味着阀门定位器只对输入信号的某个范围(如:4~12mA或0.02~0.06MPaG)有响应。因此,如果能“分程”的话,就可以根据实际需要,只用一个输入信号实现先后控制两台或多台调节阀。
2)零点和量程的调校是否容易、方便?是不是不用打开盒盖就可以完成零点和量程的调校?但值得注意的是:有时候为了避免不正确的(或非法的)操作,这种随意就可进行调校的方式需要被禁止。
3)零点和量程的稳定性如何?如果零点和量程容易随着温度、振动、时间或输入压力的变化而产生漂移的话,那么阀门定位器就需要经常地被重新调校,以确保调节阀的行程动作准确无误。
4)阀门定位器的精度如何?在理想情况下,对应某一输入信号,调节阀的内件(Trim Parts,包括阀芯、阀杆、阀座等)每次都应准确地定位在所要求的位置,而不管行程的方向或者调节阀的内件承受多大的负载。
5)阀门定位器对空气质量的要求如何?由于只有极少数供气装置能提供满足ISA标准(有关仪表用空气质量的标准:ISA标准F7.3)所规定的空气,因此,对于气动(或电-气)阀门定位器,如果要经受得住现实环境的考验,就必须能承受一定数量的尘埃、水汽和油污。
6)零点和量程的标定两者是相互影响还是相互独立?如果相互影响,则零点和量程的调校就需要花费更多的时间,这是因为调校人员必须对这两个参数进行反复调整,以便逐步地达到准确的设定。
7)阀门定位器是否具备“旁路(Bypass)”,可允许输入信号直接作用于调节阀?这种“旁路”有时可简化或者省去执行机构装配设定(Actuator Settings)的校验,如:执行机构的“支座组件(Benchset)设定”和“弹簧座负载(Seat Load)设定”――这是因为在许多情况下,一些气动调节器的气动输出信号与执行机构的“支座组件设定”*吻合匹配,用不着对其再进行设定(其实,在这种情况下,阀门定位器*可以省去不用。当然,如果选用了,那么也可利用阀门定位器的“旁路”使气动调节器的气动输出信号直接作用于调节阀)。另外,具备“旁路”有时也可允许在线的对阀门定位器进行有限度的调校或维修维护(即利用阀门定位器的“旁路”使调节阀继续保持正常工作,无须强制调节阀离线)。
8)阀门定位器的作用是否快速?空气流量(Airflow)愈大(阀门定位器不断的比较输入信号和阀位,并根据它们之间的偏差,调节其本身的输出。如果阀门定位器对这种偏差响应快速,那么单位时间里空气的流动量就大),调节系统对设定点(Setpoint)和负载变化的响应就愈快――这意味着系统的误差(滞后)愈小,控制品质愈佳。
9)阀门定位器的频率特性(或称频率响应,Frequency Response――即G(jω),系统对正弦输入的稳态响应)是什么?一般来说,频率特性愈高(即对频率响应的灵敏度愈高),控制性能就愈好。但必须注意:频率特性应采用稳定的实验方法(Consistent Test Methods)而非理论方法来确定,并且在评估测定频率特性时,应将阀门定位器和执行机构合并起来考虑。
10)阀门定位器的zui大额定供气压力是多少?例如:有些阀门定位器的zui大额定供气压力只标定为501b/in2(即:50psi,lpsi=0.070kgf/cm2≈6.865kPa),如果执行机构的额定操作压力高于501b/in2,那么阀门定位器就成了执行机构输出推动力的制约因素。
11)当调节阀与阀门定位器装配组合后,它们的定位分辨率(Positioning Resolution)如何?这对调节系统的控制品质有非常明显的作用,因为分辨率越高,调节阀的定位就越接近理想值,因调节阀过调(Overshooting)而造成的波动变化就可以得到扼制,从而zui终达到限制被调节量周期性变化的目的。
12)阀门定位器的正反作用转换是否可行?转换是否容易?有时这个功能是必要的。例如,要把一个“信号增加――阀门关”的方式改为“信号增加――阀门开”的方式,就可使用阀门定位器的正反作用转换功能。
13)阀门定位器内部操作和维护的复杂程度如何?*,部件越多,内部操作结构越复杂,对维护(修)人员的培训就越多,而且库存的备品备件就越多。
14)阀门定位器的稳态耗气量(Steady-state Air Consumption)是多少?对于某些工厂装置,这个参数很关键,而且可能是一个限制因素。SAMSON阀门定位器作用