求PM2.5是什么??PM2.5是什么
时间:2014-02-10 阅读:1182
求PM2.5是什么??PM2.5是什么
它有一个容易理解的中文名——超细颗粒物,是对空气中直径小于或等于2.5微米的固体颗粒或液滴的总称。这些颗粒如此细小,肉眼是看不到的,它们可以在空气中漂浮数天。人类纤细的头发直径大约是70微米,这就比zui大的PM2.5还大了近三十倍。PM100 总悬浮颗粒物100微米以下,PM10,小于10微米,可吸入颗粒物,人体可以通过呼吸吸入的部分,PM2.5可入肺颗粒物,可进入肺泡。
PM是英文particulate matter(颗粒物)的首字母缩写。准确的PM2.5定义要在“直径”之前加一个修饰语“空气动力学”,这可不是故作高深。空气中的颗粒物并非是规则的球形,那怎么定义又怎么测量其直径呢?在实际操作中,如果颗粒物在通过检测仪器时所表现出的空气动力学特征与直径小于或等于2.5微米且密度为1克/立方厘米的球形颗粒一致,那就称其为PM2.5。这样的定义也就决定了在测定PM2.5时,需要利用空气动力学原理把PM2.5与更大的颗粒物分开,而不是用孔径为2.5微米的滤膜来分离。
知道了PM2.5的定义,就很容易得出PM10的定义了——将定义中的2.5换成10即可,PM10也被称为可吸入颗粒物。在PM10中,直径在2.5至10微米之间的颗粒物被称为粗颗粒物,与细颗粒物相对。
PM2.5从哪儿来
虽然自然过程也会产生PM2.5,但其主要来源还是人为排放。人类既直接排放PM2.5,也排放某些气体污染物,在空气中转变成PM2.5。直接排放主要来*过程,比如化石燃料(煤、汽油、柴油)的燃烧、生物质(秸秆、木柴)的燃烧、垃圾焚烧,工业粉尘。在空气中转化成PM2.5的气体污染物主要有二氧化硫、氮氧化物、氨气、挥发性有机物。其它的人为来源包括:道路扬尘、建筑施工扬尘、工业粉尘、厨房烟气。自然来源则包括:风扬尘土、火山灰、森林火灾、漂浮的海盐、花粉、真菌孢子、细菌。
城市里zui多来源于汽车怠速,三元催化器低于290度,分解效果不好,催化剂的*工作问题是400度。PM2.5的来源复杂,成分自然也很复杂。主要成分是元素碳、有机碳化合物、硫酸盐、硝酸盐、铵盐。其它的常见的成分包括各种金属元素,既有钠、镁、钙、铝、铁等地壳中含量丰富的元素,也有铅、锌、砷、镉、铜等主要源自人类污染的重金属元素。
2000年有研究人员测定了北京的PM2.5来源:尘土占20%;由气态污染物转化而来的硫酸盐、硝酸盐、氨盐各占17%、10%、6%;烧煤产生7%;使用柴油、汽油而排放的废气贡献7%;农作物等生物质贡献6%;植物碎屑贡献1%。有趣的是,吸烟也贡献了1%,不过这只是个粗略的科学估算,并不一定准确[1]。该研究中也测定了北京PM2.5的成分:含碳的颗粒物,硫酸根,硝酸根,铵根加在一起占了重量了69% 。类似地,1999年测定的上海PM2.5中有41.6%是硫酸铵、001,41.4%是含碳的物质。
PM2.5的危害
一般来说,直径大于10微米的颗粒通常不会进入人体的肺部,因为我们的呼吸器官可以对他们进行有效的过滤和阻拦,它们只会对我们的眼睛,鼻子和嗓子造成潜在威胁。
人体的生理结构决定了对PM2.5没有任何过滤、阻拦能力,而PM2.5对人类健康的危害却随着医学技术的进步,逐步暴露出其恐怖的一面。
现代医院证明,含有高浓度超细颗粒(PM2.5)和大颗粒(PM10)的空气会对人体会产生一系列严重的健康伤害,例如可以加重呼吸系统疾病,甚至引起充血性心力衰竭和冠状动脉硬化等心脏疾病。
而人类zui近的多项医学研究表明,直径小于2.5微米的颗粒对人体的损伤zui为剧烈。因为10微米到2.5微米之间的颗粒中一部分会随着呼吸作用被呼出,一部分被支气管和肺部组织吸附;而小于2.5微米(PM2.5)的微粒,会直接进入肺部的气体交换区(肺泡),并存留在肺的深处。PM2.5除了本身对人体呼吸系统具有直接的刺激作用、致敏作用,同时它还可能作为携带细菌微生物、病毒和致癌物的载体侵入人体肺部,严重危害人体健康。
如果空气中PM2.5的浓度长期高于10微克/立方米,死亡风险就开始上升。浓度每增加10微克/立方米,总的死亡风险就上升4%,得心肺疾病的死亡风险上升6%,得肺癌的死亡风险上升8%。这意味着多大的风险呢?我们可以拿吸烟做个比较。吸烟可使男性得肺癌死亡的风险上升21倍(也就是上升2100%),女性的风险上升11倍(1100%);使中年人得心脏病死亡的风险上升2倍(200%)。和吸烟一比,PM2.5的危害就显得非常小了。如果吸烟都没有让你感到恐惧,那你就不用担心眼下PM2.5超标对健康的影响了。
但是,从全社会的角度出发,降低这些看似不大的风险,收益却是很大的。美国*在2003年做了一个估算:“如果PM2.5达标,全美国每年可以避免数万人早死、数万人上医院就诊、上百万次的误工、上百万儿童得呼吸系统疾病”。
上述关于PM2.5死亡风险的数据源自2002年发表于《美国医学会杂志》的一篇论文。这篇论文分析了一项长期研究中参与者的死亡率和空气污染之间的关系,发现死亡率升高与PM2.5和二氧化硫的污染有关联,而与粗颗粒物污染没有可靠的关联。该项在美国进行的前瞻性研究始于1982年,当时招募了120万的参与者。论文的结论是基于长达16年的随访数据,是目前关于PM2.5污染增加死亡风险zui可靠的证据。
正常是怎么样的
即使没有人为污染,空气中也有一定浓度的PM2.5,这个浓度被称为背景浓度。在美国和西欧,背景浓度大约为3-5微克/立方米,澳大利亚的背景浓度也在5微克/立方米左右。中国的背景浓度有多高?目前尚无公开的数据,但应该不会和其他国家相差太大。
中国尚未开展大范围的PM2.5监测,公开的PM2.5数据非常有限。位于广州的环保部华南环境科学研究所从2011年从6月13日开始每日发布PM2.5监测值,截至11月20日,浓度范围在0.6至99 微克/立方米之间,平均值为38微克/立方米。从近十几年来发表的科学论文中,可以查到中国一些大城市某一区域某一阶段的PM2.5的测定值。例如,2000年在北京的5个监测点测得的PM2.5年均值为101微克/立方米;2008北京奥运会的17天中,在北大测得的PM2.5zui低28.2,zui高147.4微克/立方米, 平均64.7微克/立方米。1999年,在上海两个监测点测定的PM2.5年均值为57.9和61.4 微克/立方米。这些年均值都远高于拟发布的年均标准(35微克/立方米)。
我们可以根据PM10的数据估算一下PM2.5的浓度。按照中国现行的空气质量标准,PM10是常规监测指标,全国性监测已开展了十几年。从2001年至2009年,全国主要城市PM10的平均值从125降到了90微克/立方米。PM2.5和PM10之间的比例通常在0.5-0.8之间,我们取0.8做一个估算可得:2009年全国主要城市的PM2.5平均值为72微克/立方米,是即将发布的新标准的2.1倍(35微克/立方米)。和美国的空气质量相比,这差多少呢?2009年,全美国年均PM2.5为9.9微克/立方米,在724个监测点中有90%以上的监测点年均值低于12.6微克/立方米。
全国的年均值只是用来反映我国颗粒物污染的总体现状,对于评价我们所在城市的空气质量意义并不大。我们更需要关注的是离我们生活、工作zui近的监测点的数据。这个数据哪里有呢?可以参考美国大*,他的监测仪器是专业的,但是大*毕竟不是环境监测部门,没有证据表明他们的工作人员具备相应的专业知识,而且他们测出的PM2.5数值经常比环保部门以及第三方测定的PM10还高,这是不正常的。所以,美国大*的数据也只能“仅供参考”。
然而,我们不在美国大*附近,那我们该看哪里的数据呢?全国主要城市的实时PM10数据可以在环境监测总站的上查到,每个城市都有数个监测点,我们可以选离得zui近的那个点作参考。如果你很乐观,那么可以估算PM2.5=PM10 × 0.5,如果你很悲观,那么就估算PM2.5=PM10 × 0.8。
PM2.5有标准吗
自从美国于1997年制定PM2.5的空气质量标准以来,许多国家都陆续跟进将PM2.5纳入监测指标。如果单纯从保护人类健康的目的出发,各国的标准理应一样。然而,标准的制定还需考虑各国的污染现状和经济发展水平,在一个空气污染严重的发展中国家制定极为严格的空气质量标准只能成为一个华丽的摆设,没有实际意义。根据美国癌症协会和哈佛大学的研究结果,世界卫生组织(WHO)于2005年制定了PM2.5的准则值。高于这个值,死亡风险就会显著上升。WHO同时还设立了三个过渡期目标值,为目前还无法一步到位的地区提供了阶段性目标,其中目标-1的标准zui为宽松,目标-3zui严格。
下表列举了WHO以及几个有代表性的国家的标准。中国拟实施的标准与WHO过渡期目标-1相同。美国和日本的标准一样,与目标-3基本一致。欧盟的标准略微宽松,与目标-2一致,澳大利亚的标准zui为严格,年均标准比WHO的准则值还低。标准的宽严程度基本反映了各国的空气质量情况,空气质量越好的国家就越有能力制定和实施更为严格的标准。
中国的PM2.5标准
中国的PM2.5标准拟于2016年生效,虽然比美国落后了一二十年,但和欧盟的2015年生效相比,也不算太晚。如果仅从标准的数值来看,中国即将发布的新标准已经与WHO过渡期目标-3一致。然而,即使标准值相同,而评判是否达标的方式不同,约束力是有极大差异的。举个例子,中国现行的空气质量标准制定于1996年,其中PM10的日均标准为150微克/立方米,表面上已和美国现行标准一样严格。但是,按照美国的标准,平均每年zui多只能有1天超标,否则就算不达标,超标地区需要提交改进方案并加以实施。而在中国的标准文件中,没有类似的规定。各地区在执行标准时,只是计算每年的“达标天数”和“达标率”。PM10的标准至今已经执行了15年,一个86.2%的达标率还可以作为正面消息报道。
在即将发布的PM2.5新标准中,依然没有规定多高的达标率才是可接受的。WHO和其他国家是怎么规定的呢?WHO要求每年zui多有3天超标(99%的达标率),澳大利亚zui多5天,而美国和日本要求的达标率为98%。中国PM2.5标准的落后不仅是在标准值,更重要的是在约束力上。
为什么要到2016年实施
对于这个问题,标准制定者是这样回答的:“考虑到环境空气质量标准实施是一项复杂的系统工程,以及目前全国的环境监测能力现状,结合现行标准实施过程中的经验,为保障数据准确性和可比性,将全国统一实施本标准的时间定为2016 年1 月1 日,以便为各地区预留足够的准备时间,加强标准实施的有关配套工作。”
这么说有道理吗?我们不妨参考一下其他国家是怎么做的。在美国和澳大利亚环保部门的上,对于PM2.5标准的制定过程有非常详细的备忘录,我们就以这两个国家为例。
美国早在1994年就宣布要增加PM2.5的指标。1994-1996年间,开了多次研讨会,在1996年底发布了征求意见稿。征求意见期间共接了14000个,收到4000封电子邮件、50000份书面或口头意见,而且多次通过听证会、会议、电视节目征求意见。经过这番诚意十足的意见征求,终于在1997年9月16日发布了PM2.5的标准。但在那时,尚未展开全国的PM2.5监测,直到1999年各州才陆续开始,2000年PM2.5监测常规化。
澳大利亚在2001年开始考虑,并在2003年制定了PM2.5的非强制标准。制定该标准的目的是收集数据,以便检讨这一标准是否合理,并准备于2005年开始考虑制定强制标准。在征求意见的过程中,有反对者认为应该直接设立强制标准,否则缺乏约束力,意义也就不大。澳大利亚环保委员会(NEPC)认为当时缺乏足够的PM2.5监测数据,没法很好地评估不达标会带来怎样的影响,坚持了原先的做法。直到2011年,澳大利亚的PM2.5仍然不是强制指标,不过这期间一直在做大量的监测和基础研究工作。
中国的PM2.5强制标准正在征求意见中,并拟于2016年实施,“实施”的含义应该是指开展常规检测并公布结果。美国从1997年发布标准到2000年全国监测常规化花了两三年的时间。澳大利亚2003年发布非强制标准,随后即开展全国监测。考虑到中国的国情,延后几年“实施”有其合理性,但是四五年的时间是否太长了呢?
怎么测PM2.5
空气中漂浮着各种大小的颗粒物,PM2.5是其中较细小的那部分。不难想到,测定PM2.5的浓度需要分两步走:(1)把PM2.5与较大的颗粒物分离;(2)测定分离出来的PM2.5的重量。目前,各国环保部门广泛采用的PM2.5测定方法有三种:重量法、β射线吸收法和微量振荡天平法。这三种方法的*步是一样的,区别在于第二步。
将PM2.5直接截留到滤膜上,然后用天平称重,这就是重量法。值得一提的是,滤膜并不能把所有的PM2.5都收集到,一些极细小的颗粒还是能穿过滤膜。只要滤膜对于0.3微米以上的颗粒有大于99%的截留效率,就算是合格的。损失部分极细小的颗粒物对结果影响并不大,因为那部分颗粒对PM2.5的重量贡献很小
重量法是zui直接、zui可靠的方法,是验证其它方法是否准确的*。然而重量法需人工称重,程序繁琐。如果要实现自动监测,就需要用到另外两种方法。
β射线吸收法:将PM2.5收集到滤纸上,然后照射一束beta射线,射线穿过滤纸和颗粒物时由于被散射而衰减,衰减的程度和PM2.5的重量成正比。根据射线的衰减就可以计算出PM2.5的重量。美国大*那台度很高的仪器依据的就是此原理。
微量振荡天平法:一头粗一头细的空心玻璃管,粗头固定,细头装有滤芯。空气从粗头进,细头出,PM2.5就被截留在滤芯上。在电场的作用下,细头以一定频率振荡,该频率和细头重量的平方根成反比。于是,根据振荡频率的变化,就可以算出收集到的PM2.5的重量。
市面上的仪器能测吗
和环保部门采用的标准方法相比,用非专业仪器测PM2.5显然是不可靠的,但很难说到底有多不准,只有拿来和标准方法对比一下才知道。测出来的数据也许能说明一点问题,比如能分辩出房间里有没有人吸烟,是不是刚扫过地,可是这些你的鼻子也能做到吧。
市面上的非专业仪器利用光散射的原理测定颗粒物浓度,这种方法并没有被各国环保部门采纳为标准方法,但是有依据此原理制成的专业仪器,在科研中也有运用。空气中的颗粒物浓度越高,对光的散射就越强。光的散射相对容易测,把它测出来,理论上就可以算出颗粒物浓度了。但在实际运用中,事情并没有这么简单。光的散射与颗粒物浓度之间的关系是很不确定的,受到诸多因素的影响,例如颗粒物的化学组成、形状、比重、粒径分布,而这些都取决于污染源的组成。这意味着光散射和颗粒物浓度之间的换算公式随时随地都可能在变,需要仪器使用者不断地用标准方法进行校正,没有经过科学训练的业余人士不大可能办得到。 有研究者做过理论计算:利用光散射仪测定PM2.5,至少有30-40%的不确定性。这种不确定性是这类仪器固有的,质量可靠的专业仪器尚且如此,更何况市面上仪器的质量并不都是理想的呢。
灰霾是PM2.5带来的吗
虽然肉眼看不见空气中的颗粒物,但是颗粒物却能降低空气的能见度,使蓝天消失,天空变成灰蒙蒙的一片,这种天气就是灰霾天。根据《2010年灰霾试点监测报告》,在灰霾天,PM2.5的浓度明显比平时高,PM2.5的浓度越高,能见度就越低。
虽然空气中不同大小的颗粒物均能降低能见度,不过相比于粗颗粒物,更为细小的PM2.5降低能见度的能力更强。能见度的降低其本质上是可见光的传播受到阻碍。当颗粒物的直径和可见光的波长接近的时候,颗粒对光的散射消光能力zui强。可见光的波长在0.4-0.7微米之间,而粒径在这个尺寸附近的颗粒物正是PM2.5的主要组成部分。理论计算的数据也清楚地表明这一点:粗颗粒的消光系数约为0.6平方米/克,而PM2.5的消光系数则要大得多,在1.25-10平方米/克之间,其中PM2.5的主要成分硫酸铵 铵和有机颗粒物的消光系数都在3左右,是粗颗粒的5倍。所以,PM2.5是灰霾天能见度降低的主要原因。
值得一提的是,灰霾天是颗粒物污染导致的,而雾天则是自然的天气现象,和人为污染没有必然。两者的主要区别在于空气湿度,通常在湿度大于90%时称之为雾,而湿度小于80%时称之为霾,湿度在80-90%之间则为雾霾的混合体。