G蛋白偶联受体磷酸化编码机制研究获进展
时间:2022-05-06 阅读:566
-
提供商
上海士锋生物科技有限公司 -
资料大小
93017 -
资料图片
-
下载次数
20次 -
资料类型
jpg -
浏览次数
566次
时间:2022-05-06 阅读:566
提供商
上海士锋生物科技有限公司资料大小
93017资料图片
下载次数
20次资料类型
jpg浏览次数
566次
中国科学院生物物理研究所研究员王江云课题组、山东大学基础医学院教授于晓团队与孙金鹏团队,与北京大学教授金长文团队合作的论文。
G蛋白偶联受体(GPCR)是目前已知的人类基因组中最大的膜蛋白家族,负责80%左右的跨膜信号转导,参与调控人体中多数病理与生理过程。GPCR主要通过G蛋白及arrestin将细胞外的刺激转变为细胞内信号。GPCRs招募arrestin之前通常会被GPCR激酶(GRKs)磷酸化,产生不同的磷酸化模式并通过与arrestin作用发挥不同功能。王江云研究团队与孙金鹏团队针对受体与arrestin相互作用的磷酸化编码机制展开系列研究工作,发现GPCR磷酸化编码机制,创新性的提出受体磷酸化的“笛子模型”理论【Nature Communications 6, 8202 (2015)】。基于“笛子模型”的理论基础,该合作团队进一步揭示了GPCR磷酸化编码别构调控SH3 domain蛋白的多聚脯氨酸码头分选机制【Nature Chemical Biology 14, 876-886 (2018)】。然而,单个磷酸化位点是如何调控arrestin的构象及功能尚不清楚。
研究团队利用X-ray晶体学解析了4种不同磷酸化模式的V2R C末端短肽与arrestin的复合物结构,直接说明了不同磷酸化短肽与arrestin2形成不同的作用模式。研究还发现了笛子模型中的新磷酸化编码方式,在arrestin上发现了新的磷酸根结合位点“V3'4'”。结果说明,Arrestin与受体磷酸化编码的结合方式可能比想象中复杂,存在磷酸化位点结合的优先次序,某些位置的磷酸化位点结合会决定其他位置是否可以结合,并可能有未发现的新的磷酸化编码结合位点。同时,团队应用新发展的DeSiPher技术【Nature Communications 11, 4857 (2020)】发现GPCR单个磷酸化位点缺陷可诱导arrestin与MEK和c-Raf-1相互作用区域产生特异的动态构象变化,这说明GPCR单个的磷酸化位点缺陷可直接影响arrestin远端功能结构域的构型。另外,团队利用FlAsH-BRET检测了V2R C末端不同磷酸化修饰位点突变引起的受体磷酸化模式差异可不同程度影响arrestin对MEK、c-Raf-1的招募能力。因此,GPCR磷酸化引起激活态arrestin的构型差异可引起arrestin不同的信号传导,调控arrestin发挥功能。
该研究解析了4种不同磷酸化模式的V2R C端短肽与arrestin的复合物晶体结构,结合DeSiPher和BRET等技术手段,系统说明了GPCR单个磷酸化位点缺陷即可引起arrestin远端功能结构域产生不同的构象变化,并发现了其与arrestin生物学功能的相关性,不仅揭示了GPCR单个磷酸化位点对arrestin功能的调控机制,而且发现了磷酸化编码过程中重要的次序原理,这是2015年团队提出的磷酸化编码的笛子模型的进一步重要深度阐释和拓展,并在机制方面开展更深入的探讨