高频变压器在开关电源中的加工工艺
时间:2013-01-24 阅读:1282
在高频变压器设计时,变压器的漏感和分布电容必须减至zui小,因为开关电源中高频变压器传输的是高频脉冲方波信号。在传输的瞬变过程中,漏感和分布电容会引起浪涌电流和尖峰电压,以及顶部振荡,造成损耗增加。虽然在开关晶体管的漏极上增加钳位和吸收电路可以克服尖峰电压,但过大的尖峰会导致钳位和吸收电路损耗的增加,使开关电源的效率降低,严重时会导致功率开关管的损坏。通常变压器的漏感,控制为初级电感量的1%~3%。
1 初级线圈的漏感
变压器的漏感是由于初级线圈和次级线圈之间,层与层之间,匝与匝之间磁通没有*耦合而造成的。在变压器绕制加工中可采取下列措施。
(1) 尽量减少绕组的匝数,选用高饱和磁感应强度、低损耗的磁性材料。
(2)增加线圈尺寸的高度和宽度之比。
(3)尽可能减小绕组间的绝缘厚度,但必须保证变压器本身有足够绝缘强度。
(4)采用分层交叉绕制方式绕制初级、次级绕组。
(5)采用环型磁心变压器时,不管初级、次级绕组的匝数有多少,在绕制绕组时,均沿环型圆周均匀分布地绕制。对于大电流工作状态下的环型磁心变压器,采用多绕组并联方式绕制,并且尽可能地减小线径。
(6)改善线圈之间的耦合程度。
(7)在输入电压不太高的情况下,初级、次级绕组采用双线并绕的加工工艺。
其中减少初级线圈的匝数及增加线圈尺寸的高度和宽度之比,与所选择的磁心形状有关。如果磁心放置线圈的心柱尺寸足够大,足以能使初级绕成两层,甚至绕成一层的话,就可以有效地减小初级的漏感及分布电容的值。高频变压器适于采用中间心柱较长的磁心,不适合采用矮胖形状的磁心。在上述措施中变压器绕组的匝数不能减得太少,否则当输入电压太高,或者脉冲太宽时,会引起磁心饱和,导致变压器绕组的电感值急剧降低,绕组对交流电流的限流作用降低,严重时进入短路状态,在微秒的时间里,有几十乃至几百安培的电流通过半导体器件,使之失效。
2 分布电容
变压器绕组线匝之间,同一绕组的上、下层之间,不同绕组之间,绕组与屏蔽层(或磁心)之间形成的电容称为分布电容。开关变压器分布电容主要由下面几部分组成。
(1) 各绕组与屏蔽层(或磁心)之间的分布电容。
(2)各绕组线匝之间的分布电容。
(3)绕组与绕组之间的分布电容。
(4)各绕组的上、下层之间的分布电容。
在开关电源的晶体管通、断期间,线圈的分布电容被反复地充电和放电,其能量都被钳位和吸收电路所消耗,降低了开关电源的效率。此外,线圈的分布电容还与线圈的漏感一起形成LC振荡,产生振铃噪声。要减小分布电容可以采取下列措施:
(1) 绕组进行分段绕制;
(2)正确安排绕组的极性,以减小各绕组之间的电位差;
(3)初级、次级绕组之间增加静电屏蔽措施;
(4)选择漏磁势组数M=4。
3 初级绕组
初级绕组应放在zui里层,这样可使变压器初级绕组每一匝用线长度zui短,从而使整个绕组的用线为zui少,这有效地减小了初级绕组自身的分布电容。在通常情况下,变压器的初级绕组被设计成两层以下的绕组,可使变压器的漏感为zui小。
初级绕组放在zui里面,使初级绕组得到了其他绕组的屏蔽,有助于减小变压器初级绕组和邻近器件之间电磁噪声的相互耦合。
初级绕组放在zui里面,使初级绕组的起始端作为连接开关电源功率晶体管的漏极或集电极驱动端,可减少变压器初级对开关电源其他部分电磁骚扰的耦合。
4. 次级绕组
初级绕组绕完,要加绕(3~5)层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,符合绝缘耐压的要求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模骚扰。
如果开关电源的次级有多路输出,并且输出之间是不共地的,为了减小漏感,让功率zui大的次级靠近变压器的初级绕组。如果这个次级绕组只有相对较少几匝,则为了改进耦合情况,还是应当设法将它布满完整的一层,如可以采用多根导线并联的办法,有助于改进次级绕组的填充系数。其他次级绕组紧密的绕在这个次级绕组的上面。
当开关电源多路输出采用共地技术时,处理方法简单一些。次级可以采用变压器抽头形式输出,次级绕组间不需要采取绝缘隔离,从而使变压器的绕制更加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压性能。
5. 偏压绕组
偏压绕组绕在初级和次级之间,还是绕在zui外层,和开关电源的调整是根据次级电压还是初级电压进行有关。如果电压调整是根据次级来进行的,则偏压绕组应放在初级和次级之间,这样有助于减少电源产生的传导骚扰发射。如果电压调整是根据初级来进行的,则偏压绕组应绕在变压器的zui外层,这可使偏压绕组和次级绕组之间保持zui大的耦合,而与初级绕组之间的耦合减至zui小。初级偏压绕组能布满完整的一层,如果偏压绕组的匝数很少,则可以采取加粗偏压绕组的线径,或者用多根导线并联绕制,改进偏压绕组的填充情况。这一改进措施实际上也改进了采用次级电压来调节电源的屏蔽能力,同样也改进了采用初级电压来调节电源时,次级绕组对偏压绕组的耦合情况。