【设备更新】手动ITC升级到全自动ITC,分析效率提升7倍!
时间:2024-04-18 阅读:542
国务院推动大规模设备更新的方案已经在各地稳步推行,其中提升教学科研水平的教育科研设备备受关注。
分析仪器智能化、自动化作为提高分析检测能力的主要方向,也十分契合国家推行设备更新的“鼓励先进、淘汰落后”的总体要求。马尔文帕纳科有多款设备均可以进行自动化升级,本文中我们将对溶液内分子互作的金标准技术:等温滴定量热技术(ITC)的自动化升级进行介绍,您将看到ITC用户的分析效率如何数倍的提升!
等温滴定量热仪(ITC)无需对样品进行任何标记、无需芯片固定和修饰,也无需再生步骤,无分子量大小和样品种类限制、是真正的无标记的溶液内互作技术,被业内认可为分子间相互作用分析的金标准技术。马尔文帕纳科在Microcal PEAQ-ITC的基础上,新增了全自动化运行的功能,推出Microcal PEAQ-ITC Automated系列,实现自动化与智能化运作,集高灵敏度与全自动操作优势于一体。
PEAQ ITC (左),PEAQ-ITC Automated(右)
Microcal PEAQ-ITC Automated主要特点及优势:
-
全自动化,可全自动运行4块96孔板
-
自动化操作,智能化分析,全面提升实验可靠性
-
软件简化了工作流程,并提高数据分析的一致性
-
能在运行中追加新实验,无需停止队列
-
多次滴定,单次滴定器加载,提高效率
-
触摸屏操作,最新的精简布局
-
一次无人值守可完成384个样品的分析
-
适合大批量样品连续分析的客户
PEAQ-ITC Automated每天可分析高达42个滴定(按24小时计算),相比手动版一般每天(按8小时计算)分析5个滴定,将分析效率提升7倍。全自动化实现加样,清洗,样品转移,减少人员操作误差,减少新手培训和指导时间,提升数据质量和仪器使用效率,把更多操作留给机器,将更多时间留给思考。
2024年,Microcal产品线中,Auto-ITC200系列、VP-ITC系列、VP-DSC系列、Cap-DSC系列将陆续停止服务,马尔文帕纳科的经典产品Mastersizer 2000也已于2022年停止服务,为不影响您日常的研究、生产工作,我们建议您提前准备在替代产品上的方法转移。同时为响应国家发改委推动大规模设备更新的政策,我们将提供设备更新换代的技术支持和测样服务,感兴趣的用户欢迎留下您的联系方式,了解更多服务内容。
PEAQ-ITC Automated 相关文献(部分):
1.Zong, Y. et al.Development of Complementary Photo‐arginine/lysine to Promote Discovery of Arg/Lys hPTMs Interactomes. Advanced Science2307526 (2024) doi:10.1002/advs.202307526.
2.Weng, Z. et al.Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. Journal of Advanced Research57, 197–212 (2024).
3.Rivera, M. et al.A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states. Nucleic Acids Researchgkae118 (2024) doi:10.1093/nar/gkae118.
4.Ojha, M. et al.Structure of saguaro cactus virus 3′ translational enhancer mimics 5′ cap for eIF4E binding. Proc. Natl. Acad. Sci. U.S.A.121, e2313677121 (2024).
5.Choi, Y., Koh, J., Cha, S.-S. & Roe, J.-H. Activation of zinc uptake regulator by zinc binding to three regulatory sites. Nucleic Acids Researchgkae079 (2024) doi:10.1093/nar/gkae079.
6.Travis, C. R., Francis, D. Y., Williams, D. C. & Waters, M. L. Evaluation of acyllysine isostere interactions with the aromatic pocket of the AF9YEATSdomain. Protein Science32, e4533 (2023).
7.Qiu, C. et al.Intra-and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun14, 7323 (2023).
8.Liu, S. et al.Differentiating Inhibition Selectivity and Binding Affinity of Isocitrate Dehydrogenase 1 Variant Inhibitors. J. Med. Chem.66, 5279–5288 (2023).
9.Campagne, S. et al.Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor
RBM39. Nat Commun14, 5366 (2023).
10.Zeller, M. J. et al.SHAPE-enabled fragment-based ligand discovery for RNA. Proc. Natl. Acad. Sci. U.S.A.119, e2122660119 (2022).
11.Feng, T. et al.Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2. Nat Commun13, 5208 (2022).
12.Zhou, J., Horton, J. R., Blumenthal, R. M., Zhang, X. & Cheng, X. Clostridioides difficile specific DNA adenine methyltransferase CamA squeezes and flips adenine out of DNA helix. Nat Commun12, 3436 (2021).
13.Palte, R. L. et al.Cryo-EM structures of inhibitory antibodies complexed with arginase 1 provide insight into mechanism of action. Commun Biol4, 927 (2021).
14.Liu, S. et al.Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1. Commun Biol4, 1243 (2021).
15.Chen, S., Zhang, W., Min, J. & Liu, K. Lesson from a Fab-enabled co-crystallization study of TDRD2 and PIWIL1. Methods175, 72–78 (2020).