冠乾科技(上海)有限公司

化工仪器网初级6

收藏

三维光学轮廓仪在光学领域的解决方案

时间:2021-03-11      阅读:810

光学元件在各个领域都有广泛应用,对光学元件的表面加工精度提出越来越高的要求。如何检测光学元件的加工精度,从而用于优化加工方法,保证终元器件的性能指标,是光学元件加工领域的关键问题之一。

光学元件的加工精度包括表面质量和面型精度,这些参数会影响其对光信号的传播,进而影响终器件的性能。此外,各种新型光学元件也需要检测其表面轮廓,比如非球面,衍射光学元件,微透镜阵列等。除了终光学元件的加工精度以外,各种光学元件加工工艺也需要检测中间过程的三维形貌以保证终产品的精度,包括注塑、模压的模具,光学图案转印时的掩膜版,刻蚀过程的图案深度、宽度等。

布鲁克的三维光学显微镜配备的双光源技术,同时实现白光干涉和相移干涉成像,适用于各种不同光学样品、模具的三维形貌测量。在光学加工领域得到广泛应用。

· 设备可以用于光学元件表面质量检测,可以通过表面粗糙度、表面斜率分布等判断光学元件整体散射率,也可以统计局部的各种缺陷。

· 设备还可以用于各种光学元件的面型分析,除了手动分析以外,软件还提供了包括Zernike多项式拟合、非球面分析等功能。

· 由于该设备能准确测量和分析光学元件,在多种先进光学元件中得到广泛应用,包括光栅、菲涅尔透镜和二元光学元件等衍射光学元件,以及微透镜阵列等。

1.jpg

         粗糙度作为衡量表面加工质量的基本参数,在光学加工领域应用广泛。1961年Bennett and Porteus就观察到当表面粗糙度远小于入射波长时,散射率与Sq直接相关。因此Sq(Rq,RMS)在光学领域得到广泛关注。公式也显示,随着入射波长的降低(或者频率的增加),Sq也需要随之减小,以保持散射率不增加。因此在高频即短波长领域对粗糙度的检测更为重要。

       白光干涉仪作为一种精密的三维形貌测量设备,能准确测量亚纳米尺度的表面粗糙度。软件还能根据各种相关标准,进行表面形貌分析,获得多种参数,包括波纹度、翘曲等。

从两百年前的光栅开始,衍射光学元件(Diffractive Optical Elements,DOE)在各种领域应用广泛。比如基于广播的衍射理论设计的二元光学器件,在传统光学元件表面刻蚀产生两个或多个台阶深度的浮雕结构,形成纯相位、同轴再现、具有*衍射效率的一类衍射光学元件。

上个世纪末还出现了一种混合光学成像系统,它既包括传统光学器件,也含有衍射光学器件。这类系统同时利用了光的折射和衍射,不仅可以增加光学设计自由度,而且能够在一定程度上突破传统光学系统的许多局限性,在改善系统像质、减小体积和降低成本等多方面都表现出了优势。

       布鲁克的三维光学显微镜能准确测量、分析这些元件表面,加速这类元件的应用速度。软件可以自动分析垂直的光栅结构,获得光栅的周期、粗糙度、深度等信息,避免手动测量带来的人为误差。对于菲涅尔透镜,软件可以从透镜三维形貌中获得每一级的间距、高度和曲率半径等信息。软件可以自动测量并分析二元光学器件,获得器件表面每个区域的高度、粗糙度、位置等参数,用于评估加工样品的质量。其中,台阶数和台阶高度与衍射效率直接相关。随着台阶数增加,制作难度也在增加。准确测量各个台阶极为重要。      

       对于这类表面有各种结构的光学元件,布鲁克的软件提供了多种自动分析工具,比如多区域分析。它可以通过多种特征识别方式,自动提取样品表面各种结构的三维信息,并做统计分析,获得每个结构的多种参数(如下图所示)。

     2.jpg

上一篇: SiC外延片测试方案 下一篇: 布鲁克公司发布完整的扫描电化学显微镜解决方案
提示

请选择您要拨打的电话: