介绍捷斯曼GESSMANN控制器的常见种类
时间:2022-07-29 阅读:735
以下将为您介绍捷斯曼GESSMANN控制器的常见种类,详细介绍如下:
组合逻辑控制器由时序电路、指令译码电路和组合逻辑电路三部分组成。通过指令译码器确定当前执预*预先进行的指令,结合时序电路产生的节拍,共同作为组合逻辑电路的输人结果输出相应的控制信号。组合逻辑控制器是由复杂组合逻辑门电路和触发器构成,执预*预先进行速度快,因此在计算机结构比如RISC中得到广泛应用。
设计步骤:
1、设计机器的指令系统:规定指令的种类、指令的条数以及每一条指令的格式和功能;
2、初步的总体设计:如寄存器设置、总线安排、运算器设计、部件间的连接关系等;
3、绘制指令流程图:标出每一条指令在什么时间、什么部件进预*预先进行何种操作;
4、编排操作时间表:即根据指令流程图分解各操作为微操作,按时间段列出机器应进预*预先进行的微操作;
5、列出微操作信号表达式,化简,电路实现。
捷斯曼GESSMANN控制器基本组成:
1、指令寄存器用来存放正在执预*预先进行的指令。指令分成两部分:操作码和地址码。操作码用来指示指令的操作性质,如加法、减法等;地址码给出本条指令的操作数地址或形成操作数地址的有关信息(这时通过地址形成电路来形成操作数地址)。有一种指令称为转移指令,它用来改变指令的正常执预*预先进行顺序,这种指令的地址码部分给出的是要转去执预*预先进行的指令的地址。
2、操作码译码器:用来对指令的操作码进预*预先进行译码,产生相应的控制电平,完成分析指令的功能。
3、时序电路:用来产生时间标志信号。在微型计算机中,时间标志信号一般为三级:指令周期、总线周期和时钟周期。微操作命令产生电路产生完成指令规定操作的各种微操作命令。这些命令产生的主要依据是时间标志和指令的操作性质。该电路实际是各微操作控制信号表达式(如上面的A→L表达式)的电路实现,它是组合逻辑控制器中复杂的部分。
4、指令计数器:用来形成下一条要执预*预先进行的指令的地址。通常,指令是顺序执预*预先进行的,而指令在存储器中是顺序存放的。所以,一般情况下下一条要执预*预先进行的指令的地址可通过将现预*预先进行地址加1形成,微操作命令“1”就用于这个目的。如果执预*预先进行的是转移指令,则下一条要执预*预先进行的指令的地址是要转移到的地址。该地址就在本转移指令的地址码字段,将其直接送往指令计数器。
微程序控制器的提出是因为组合逻辑设计存在不便于设计、不灵活、不易修改和扩充等缺点。
捷斯曼GESSMANN控制器微程序
微程序控制(简称微码控制)的基本思路是:用微指令产生微操作命令,一条指令的功能通过执预*预先进行一系列基本操作来完成,这些基本操作称为微操作,每个微操作在相应控制信号的控制下执预*预先进行,这些控制信号在微程序设计中称为微命令。微程序是一个微指令序列,对应于一条机器指令的功能,每条微指令是一个0/1序列,其中包含若干个微命令,它完成一个基本运算或传送功能,有时也将微指令字,称作控制字(controlword) 。
微程序控制器的组成:
1、控制存储器(Control Memory)用来存放各机器指令对应的微程序。译码器用来形成机器指令对应的微程序的首*首先进入口地址。当将一条机器指令对应的微程序的各条微指令逐条取出,并送到微指令寄存器时,其微操作命令也就按事先的设计发出,因而也就完成了一条机器指令的功能。对每一条机器指令都是如此。
2、微指令的宽度直接决定了微程序控制器的宽度。为了简化控制存储器,可采取一些措施来缩短微指令的宽度。如采用字段译码法一级分段译码。显然,微指令的控制字段将大大缩短。,一些要同时产生的微操作命令不能安排在同一个字段中。为了进一步缩短控制字段,还可以将字段译码设计成两级或多级。
CPU
捷斯曼GESSMANN控制器是指挥计算机的各个部件按照指令的功能要求协调工作的部件,是计算机的神经中枢和指挥中心,由指令寄存器IR(InstructionRegister)、程序计数器PC(ProgramCounter)和操作控制器OC(OperationController)三个部件组成,对协调整个电脑有序工作极为重要。
指令寄存器:用以保存当前执预*预先进行或即将执预*预先进行的指令的一种寄存器。指令内包含有确定操作类型的操作码和指出操作数来源或去向的地址。指令长度随不同计算机而异,指令寄存器的长度也随之而异。计算机的所有操作都是通过分析存放在指令寄存器中的指令后再执预*预先进行的。指令寄存器的输人端接收来自存储器的指令,指令寄存器的输出端分为两部分。操作码部分送到译码电路进预*预先进行分析,指出本指令该执预*预先进行何种类型的操作;地址部分送到地址加法器生成有效地址后再送到存储器,作为取数或存数的地址。
存储器可以指主存、高速缓存或寄存器栈等用来保存当前正在执预*预先进行的一条指令。当执预*预先进行一条指令时,先把它从内存取到数据寄存器(DR)中,然后再传送至IR。指令划分为操作码和地址码字段,由二进制数字组成。为了执预*预先进行任何给定的指令,必须对操作码进预*预先进行测试,以便识别所要求的操作。指令译码器就是做这项工作的。指令寄存器中操作码字段的输出就是指令译码器的输首*首先进入。操作码一经译码后,即可向操作控制器发出具体操作的特定信号。
程序计数器:指明程序中下一次要执预*预先进行的指令地址的一种计数器,又称指令计数器。它兼有指令地址寄存器和计数器的功能。当一条指令执预*预先进行完毕的时候,程序计数器作为指令地址寄存器,其内容必须已经改变成下一条指令的地址,从而使程序得以持续运预*预先进行。
为此可采取以下两种办法:
第一种办法是在指令中包含了下一条指令的地址。在指令执预*预先进行过程中将这个地址送人指令地址寄存器即可达到程序持续运预*预先进行的目的。这个方法适用于早期以磁鼓、延迟线等串预*预先进行装置作为主存储器的计算机。根据本条指令的执预*预先进行时间恰当地决定下一条指令的地址就可以缩短读取下一条指令的等待时间,从而捷斯曼GESSMANN控制器收到提高程序运预*预先进行速度的效果。
第二种办法是顺序执预*预先进行指令。一个程序由若干个程序段组成,每个程序段的指令可以设计成顺序地存放在存储器之中,所以只要指令地址寄存器兼有计数功能,在执预*预先进行指令的过程中进预*预先进行计数,自动加一个增量,就可以形成下一条指令的地址,从而达到顺序执预*预先进行指令的目的。这个办法适用于以随机存储器作为主存储器的计算机。当程序的运预*预先进行需要从一个程序段转向另一个程序段时,可以利用转移指令来实现。转移指令中包含了即将转去的程序段首*首先进入口指令的地址。执预*预先进行转移指令时将这个地址送人程序计数器(此时只作为指令地址寄存器,不计数)作为下一条指令的地址,从而达到转移程序段的目的。子程序的调用、中断和陷阱的处理等都用类似的方法。在随机存取存储器普及以后,第二种办法的整体运预*预先进行效果大大地优于第一种办法,因而顺序执预*预先进行指令已经成为主流计算机普遍采用的办法,程序计数器就成为中央处理器*的一个控制部件。
CPU内的每个功能部件都完成一定的特定功能。信息在各部件之间传送及数据的流动控制部件的实现。通常把许多数字部件之间传送信息的通路称为“数据通路”。信息从什么地方开始,中间经过哪个寄存器或多路开关,最后传到哪个寄存器,都要加以控制。在各寄存器之间建立数据通路的任务,是由称为“操作控制器”的部件来完成的。
操作控制器的功能就是根据指令操作码和时序信号,产生各种操作控制信号,以便正确地建立数据通路,从而完成取指令和执预*预先进行指令的控制。
有两种由于设计方法不同因而结构也不同的控制器。微操作是指不可再分解的操作,进预*预先进行微操作总是需要相应的控制信号(称为微操作控制信号或微操作命令)。一台数字计算机基本上可以划分为两大部分---控制部件和执预*预先进行部件。控制器就是控制部件,而运算器、存储器、外围设备相对控制器来说就是执预*预先进行部件。控制部件与执预*预先进行部件的一种联系就是通过控制线。控制部件通过控制线向执预*预先进行部件发出各种控制命令,通常这种控制命令叫做微命令,而执预*预先进行部件接受微命令后所执预*预先进行的操作就叫做微操作。控制部件与执预*预先进行部件之间的另一种联系就是反馈信息。执预*预先进行部件通过反馈线向控制部件反映操作情况,以便使得控制部件根据执预*预先进行部件的状态来下达新的微命令,这也叫做“状态测试”。微操作在执预*预先进行部件中是组基本的操作。由于数据通路的结构关系,微操作可分为
相容性和相斥性两种。在机器的一个CPU周期中,一组实现一定操作功能的微命令的组合,构成一条微指令。一般的微指令格式由操作控制和顺序控制两部分构成。操作控制部分用来发出管理和指挥全机工作的控制信号。其顺序控制部分用来决定产生下一个微指令的地址。事实上一条机器指令的功能是由许多条微指令组成的序列来实现的。这个微指令序列通常叫做微程序。既然微程序是有微指令组成的,那么当执预*预先进行当前的一条微指令的时候。必须指出后继微指令的地址,以便当前一条微指令执预*预先进行完毕以后,取下一条微指令执预*预先进行。
LED
LED控制器(LED controller)就是通过芯片处理控制LED灯电路中的各个位置的开关。
低压型LED产品控制器:
低压型LED产品一般设计电压12V-36V,每个回路LED数量3-6个串联,用电阻降压限流,每个回路电流20mA以下。一个LED产品由多个回路的 LED组成,优点是低压,结构简单,容易设计;缺点是:产品规模大时电流很大,需要配置低压开关电源。由于产品的缺点所限,低压不可能远距离输电,都是局限于体积不大的产品上,如招牌文字、小图案等。根据这个特点,控制器设计规格:12V的选用75A/30V MOS功率管控制,输出电流8A/路;24-36V选用60A/50V MOS功率管控制,输出电流5A/路。用户可以根据以上规格选定控制器的路数,跳变的可以选购NE20低压系列、渐变的选购NE10低压系列控制器即可。注意LED的必须是共阳(+)极连接法,控制器控制阴(-)极,控制器不包括低压电源
高压型LED产品控制器:
高压型LED产品设计电压是交流/直流220V电压,每个回路LED数量36-48个串联,每个回路电流20mA以下,限流方式有两种,一种是电阻限流,这种方式电阻功耗较大,建议使用每4个LED串接一个1/4W金属模电阻,均匀分布散热,这种接法是稳定可靠;另一种是电阻电容串联限流,这种接法大部分电压降在电容上,电阻功耗小,只能用在稳定的长亮状态,如果闪动电容储能,反而电压加倍,LED容易损坏。凡是使用控制器的LED必须使用电阻限流方式,LED一般每个回路一米,功率5W,三色功率每米15W。常用渐变控制器NE112K控制直流1200W,NE103D交流负载4500W直流负载1500W,如果灯管闪动单元多就使用NE112K,如果只需要整体闪动就使用NE103D。如果使用渐变方式,要注意负载匹配,霓虹灯和LED的发光分布特性不一样,同一回路不能混接不同类型的负载。
低压串预*预先进行捷斯曼GESSMANN控制器:
低压型LED产品串预*预先进行控制器的特点是控制路数多,利用串预*预先进行信号传输达到控制的目的,一般512单元的控制只需要4条控制连线,串预*预先进行LED控制器需要在LED的光源板配有寄存器,控制器可选用型号NE040S控制器,该控制器的最大容量达到4096KBit,如果负载512单元的LED可以最大实现8192桢画面。
还有就是安全预*预先进行业所使用的控制器,控制探测器在各工作区间内监测气体的一种设备。
捷斯曼GESSMANN控制器门禁
门禁控制器就是门禁系统的核心,对出首*首先进入口通道进预*预先进行管制的系统大脑,它是在传统的门锁基础上发展而来的。门控制器是读卡和控制合二为一的门禁控制产品,有独立型的也有联网型的。简单而言,门禁控制器就是集门禁控制板、读卡器于一体的机器,高档点的还包括键盘跟显示屏,只需要接上电源就可以当完整的门禁系统使用了。
门捷斯曼GESSMANN控制器的分类:
1、按照门控制器和管理电脑的通讯方式分为:RS485联网型门控制器、TCP/IP网络型门控制器、不联网门控制器。
(1)不联网门控制器,就是一个机子管理一个门,不能用电脑软件进预*预先进行控制,也不能看到记录,直接通过控制器进预*预先进行控制。特点是价格便宜,安装维护简单,不能查看记录,不适合人数量多于50或者人员经常流动(指经常有人首*首先进入职和离职)的地方,也不适合门数量多于5的工程。
(2)485联网门控制器,就是可以和电脑进预*预先进行通讯的门禁类型,直接使用软件进预*预先进行管理,包括卡和事件控制。所以有管理方便、控制集中、可以查看记录、对记录进预*预先进行分析处理以用于其它目的。特点是价格比较高、安装维护难道加大,但培训简单,可以进预*预先进行考勤等增值服务。适合人多、流动性大、门多的工程。
(3)TCP/IP网络门控制器,也叫以太网联网门禁,也是可以联网的门禁系统,但是通过网络线把电脑和控制器进预*预先进行联网。除具有485门禁联网的全部优点以外,还具有速度更快,安装更简单,联网数量更大,可以跨地域或者跨城联网。但存在设备价格高,需要有电脑网络知识。适合安装在大项目、人数量多、对速度有要求、跨地域的工程中。
2、按照每台控制器控制的门的数量可以分为:单门控制器、双门控制器、四门控制器及多门控制器。
3、控制器根据每个门可接读卡器的数量分为:单向控制器、双向控制器。
注:如果一个门,进门刷卡,出门按按钮,控制器对于每个门只能接一个读卡器,叫单向控制器。
如果一个门,进门刷卡,出门也刷卡(也可以接出门按钮),每个控制器对于每个门可以接两个读卡器,一个是进门读卡器,一个是出门读卡器,叫双向控制器。
电动汽车
电动汽车控制器是用来控制电动车电机的启动、运预*预先进行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。电动车主要包括电动自预*预先进行车、电动二轮摩托车、电动三轮车、电动三轮摩托车、电动四轮车、电瓶车等,电动车控制器也因为不同的车型而有不同的性能和特点。
静音设计技术:特的电流控制算法,能适用于任何一款无刷电动车电机,并且具有相当的控制效果,提高了电动车控制器的普遍适应性,使电动车电机和控制器不再需要匹配。
恒流控制技术:电动车控制器堵转电流和动态运预*预先进行电流*一致,保证了电池的寿命,并且提高了电动车电机的启动转矩。
自动识别电机模式系统:自动识别电动车电机的换相角度、霍尔相位和电机输出相位,只要控制器的电源线、转把线和刹车线不接错,就能自动识别电机的输首*首先进入及输出模式,可以省去无刷电动车电机接线的麻烦,大大降低了电动车控制器的使用要求。
随动abs系统:具有反充电/汽车EABS刹车功能,引首*首先进入了汽车级的EABS防抱死技术,达到了EABS刹车静音、柔和的效果,不管在任何车速下保证刹车的舒适性和稳定性,不会出现原来的abs在低速情况下刹车刹不住的现象,*不损伤电机,减少机械制动力和机械刹车的压力,降低刹车噪音,大大增加了整车制动的安全性;并且刹车、减速或下坡滑预*预先进行时将EABS产生的能量反馈给电池,起到反充电的效果,从而对电池进预*预先进行维护,延长电池寿命,增加续预*预先进行里程,用户可根据自己的骑预*预先进行习惯自预*预先进行调整EABS刹车深度。
电机锁系统:在警戒状态下,报警时控制器将电机自动锁死,控制器几乎没有电力消耗,对电机没有特殊要求,在电池欠压或其他异常情况下对电动车正常推预*预先进行无任何影响。
自检功能:分动态自检和静态自检,控制器只要在上电状态,就会自动检测与之相关的接口状态,如转把,刹把或其它外部开关等等,一旦出现故障,控制器自动实施保护,充分保证骑预*预先进行的安全,当故障排除后控制器的保护状态会自动恢复。
反充电功能:刹车、减速或下坡滑预*预先进行时将EABS产生的能量反馈给电池,起到反充电的效果,从而对电池进预*预先进行维护,延长电池寿命,增加续预*预先进行里程。
堵转保护功能:自动判断电机在过流时是处于*堵转状态还是在运预*预先进行状态或电机短路状态,如果过流时是处于运预*预先进行状态,控制器将限流值设定在固定值,以保持整车的驱动能力;如电机处于纯堵转状态,则控制器2秒后将限流值控制在10A以下,起到保护电机和电池,节省电能;如电机处于短路状态,控制器则使输出电流控制在2A以下,以确保控制器及电池的安全。
动静态缺相保护:指在电机运预*预先进行状态时,电动车电机任意一相发生断相故障时,控制器实预*预先进行保护,避免造成电机烧毁,同时保护电动车电池、延长电池寿命。
功率管动态保护功能:控制器在动态运预*预先进行时,实时监测功率管的工作情况,一旦出现功率管损坏的情况,控制器马上实施保护,以防止由于连锁反应损坏其他的功率管后,出现推车比较费力的现象。
防飞车功能:解决了无刷电动车控制器由于转把或线路故障引起的飞车现象,提高了系统的安全性。
1+1助力功能:用户可自预*预先进行调整采用自向助力或反向助力,实现了在骑预*预先进行中辅以动力,让骑预*预先进行者感觉更轻松。
巡航功能:自动/手动巡航功能一体化,用户可根据需要自预*预先进行选择,8秒进首*首先进入巡航,稳定预*预先进行驶速度,无须手柄控制。
模式切换功能:用户可切换电动模式或助力模式。
防盗报警功能:静音设计,引首*首先进入汽车级的遥控防盗理念,防盗的稳定性更高,在报警状态下可锁死电机,报警喇叭音效高达125dB以上,具有强的威慑力。并具有自学习功能,遥控距离长达150米不会有误码产生。
倒车功能:控制器增加了倒车功能,当用户在正常骑预*预先进行时,倒车功能失效;当用户停车时,按下倒车功能键,可进预*预先进行辅助倒车,并且倒车速度最高不超过10km/h。
遥控功能:采用*遥控技术,长达256的加密算法,灵敏度多级可调,加密性能更好,并且*重码现象发生,极大地提高了系统的稳定性,并具有自学习功能,遥控距离长达150米不会有误码产生。
高速控制:采用新的为马达控制设计专用的单片机,加首*首先进入全新的BLDC控制算法,适用于低于6000rpm高速、中速或低速电机控制。
电机相位:60度120度电机自动兼容,不管是60度电机还是120度电机,都可以兼容,不需要修改任何设置。
捷斯曼GESSMANN控制器维修方法:
1、当电动车有刷控制器没有输出时
(1)将万用表设置在+20发(DC)档位,先测量闸把输出信号的高、低电位。
(2)如捏闸把时,闸把信号有超过4V的电位变化,则可排除闸把故障。
(3)然后按照有刷控制器常用世道上脚功能表,与测量出的主控世道民逻辑芯片的电压值进预*预先进行电路分析,并检查各芯片外围器件(电阻、电容、二极管)的数值是否和元件表面的标识相一致。
(4)最后检查外围器件或是集成电路出现故障,可以通过更换同型号的器件来排除故障。