WSZ-AO-1.5m3/h地埋式生活污水处理设备
WSZ-AO-1.5m3/h地埋式生活污水处理设备
WSZ-AO-1.5m3/h地埋式生活污水处理设备
WSZ-AO-1.5m3/h地埋式生活污水处理设备
WSZ-AO-1.5m3/h地埋式生活污水处理设备

WSZ-AO-1.5m3/h地埋式生活污水处理设备

参考价: 面议

具体成交价以合同协议为准
2018-12-20 16:25:19
511
产品属性
关闭
潍坊鲁盛水处理设备有限公司

潍坊鲁盛水处理设备有限公司

中级会员7
收藏

组合推荐相似产品

产品简介

WSZ-AO-1.5m3/h地埋式生活污水处理设备难生物降解有机废水主要是指可生化性小于0.2但还需继续处理的水,其来源非常广泛,大体可以分为以下四类:*类是生活污水生化处理出水或尾水;第二类是高浓度生化性好的废水处理出水;第三类是园区综合废水处理出水;第四类是生物毒性大的工业废水排水。

详细介绍

WSZ-AO-1.5m3/h地埋式生活污水处理设备

鲁盛环保专业生产:WSZ-AO-1.5m3/h地埋式生活污水处理设备

 异相催化氧化新技术又称超级催化氧化技术,或纳米催化氧化技术,是对现有Fenton技术的一种革新,因此本质上仍然属于Fenton氧化法,其新颖性主要体现在分解H2O2的异相催化剂RMD-1上。基本原理与Fenton氧化相似,即在新型异相催化剂RMD-1的作用下,H2O2被分解为高活性的羟基自由基(˙OH),这种˙OH在25 ℃、浓度为1 mol/L时的氧化还原电位高达2.8 V,能在常温常压下将难生物降解或难化学氧化的绝大多数大分子有机污染物分步快速地转化为含多个羟基自由基的小分子物质,并最终转化为二氧化碳和水。对于Fenton氧化法处理有机废水的试验研究,大多数试验研究表明初始pH在3~4有良好的反应速率和反应效果。而在研究新型异相催化剂RMD-1作用下H2O2分解过程中,发现反应体系中无论有机物是否存在,该催化分解反应都会不断产生氢离子(H+),结果都会导致反应体系pH不断下降,依据H2O2加入量的不同,pH可以降到3~0.5,甚至更低,直到H2O2分解*为止。因此,反应过程中要不断用碱液进行pH回调,使其始终保持在3~4,以保持良好的反应速率。进一步试验跟踪还发现,H2O2刚刚投加完毕后,体系pH会继续降低,但会逐渐减缓,之后保持一段时间不变,接着就会出现上升的现象,依据反应体系情况不同,一般会上升0.01~0.25个pH单位。由此,可用pH的反升现象来判断体系中H2O2是否分解*,是否达到反应终点。


RMD-1催化剂投加量的影响
催化剂在催化分解H2O2产生˙OH的过程中,会逐渐失效而转化成污泥。因此既需要不断补加一定量的RMD-1催化剂,以保持稳定的反应速率,同时也需要把失效的催化剂以污泥的形式从体系中不断移除。工程中只要基本保持RMD1催化剂补加速率与失效速率*即可。为保持高效的反应速率,反应体系中催化剂的浓度不能太小,也不宜太高,具体与生物难降解有机污染物浓度有关,一般COD越高,体系中需要投加的催化剂就越多。对于COD在100~500 mg/L的污水,RMD-1催化剂的投加量以反应体系的0.3%~1%为宜;对于COD在1 000~50 000 mg/L的污废水,催化剂的投加量则介于2%~15%为宜。研究还发现,在催化氧化过程中,有机污染物几乎不产生污泥,污泥的产生主要来自催化剂的失效,失效催化剂产生的污泥量为COD消除量的45%~70%,即每去除1 kg COD,将产生污泥0.45~0.7 kg。
催化反应时间的影响
反应时间在RMD-1催化剂催化分解H2O2的过程中是一个较为复杂的因素,总体上可将催化反应时间分为直接作用时间和间接消耗时间。直接作用时间与反应体系中有机污染物、催化剂及H2O2的浓度有关,还和H2O2的投加速率、˙OH的产生效率和污染物的去除效率有关,根本上是与有机污染物的浓度和去除效率有关。在较高的有机污染物去除效率条件下,低的有机污染物浓度如COD为100~500 mg/L时,直接反应时间一般在0.5~2 h;而高的有机污染物浓度如COD达5000~45000 mg/L时,直接反应时间则达4~14 h。一般情况下,直接作用时间宜通过试验进行确定。间接消耗时间为H2O2投加完成后的继续反应时间,主要作用一是消耗掉体系中剩余的H2O2,使其不断转化为˙OH,进而促使有机物的继续分解转化;二是消除体系中残留H2O2对COD测定的影响。间接消耗时间,可通过反应体系pH的小幅上升来判断确定。试验研究表明,间接消耗时间大多维持在0.5~3 h。

高浓度生化性好的废水生化处理出水,其来源有畜禽养殖废水、垃圾渗滤液、食品行业加工废水等,这类水一般地点较为偏远、周边缺少二级纳污处理设施,单个企业排水规模一般为每天100~300 m³。这类水营养虽丰富,可生化性好,但因COD非常高,可达5000~20000 mg/L,经生化工艺处理后,其COD仍在1500~2 000 mg/L或以上,可生化性已然从0.3~0.6降至0.1以下,既不能满足排放需要,也满足不了回用需求,因此需要继续进一步深化处理。
综合废水处理出水,其来源主要为工业园区的少量生活污水与园区工业企业排放的经过处理符合相关要求出水的混合水,这类水的总体特征为工业排放水量大,COD在100~500 mg/L,缺营养,可生化性差,B/C小于0.2,甚至0.1,与园区生活污水混合后,营养虽有改善,但因生活污水相对少,形成的综合废水仍难采取单一的生化工艺进行达标处理,必须经深度处理才能满足回用或排放要求。

生物毒性大的工业废水排水,这类水来源于工业企业的生产,其排水规模因企业生产对象不同有很大不同,有的排放量少,污染物浓度不仅非常高,而且变化幅度大,如家具生产排放水,日排放量3~5 m³,水质变化却非常大,COD在3 000~200000 mg/L;再如某些选矿企业排放水,日排放量1~2 m³,COD却高达130000 mg/L以上。有的排放量大,污染物浓度变化幅度相对较小,如制革废水、印染废水、造纸废水等,这类企业日排放量达2000~5000 m³,COD却只在2000~4000 mg/L变化。这类水由于营养相对缺乏,可生化性差,生物毒性大,属于典型的难生物降解有机废水,若选取常规的工艺技术进行处理,出水COD要达到500 mg/L甚至100 mg/L以下的排放要求是相当困难的。
现有难生物降解废水的深度处理技术目前主要有活性炭或硅藻土吸附技术、反渗透膜技术、微电解技术、光化学/臭氧氧化技术、类芬顿氧化技术、湿法氧化技术以及超临界氧化技术等,这些技术或多或少都在难生物降解废水出水的深度处理中得到不同程度的应用,尤其是活性炭吸附技术、反渗透膜技术应用较为普遍。
活性炭吸附技术是通过活性炭材质的多空结构吸附性能将水中难生物降解的大分子物质吸附到活性炭的多孔介质结构中,从而降低出水中有机物的浓度,由于污染物只是转移,并没有进行*的分解处理。因此,当活性炭吸附达到吸附平衡或吸附饱和时,就需要对活性炭进行再生处理。在活性炭吸附性能一定的情况下,水中污染物浓度越低,达到吸附饱和或吸附平衡的时间就越长,处理水量就越多,因此通常利用活性炭来进行接近满足排放要求的尾水处理。

反渗透膜分离技术是利用水中溶质粒径不同、浓度不同,其渗透压有明显差异的原理,通过加压方式将水从含溶质分子种类多、浓度高的一侧通过膜逆向进入到溶质分子种类少、浓度低的一侧的物理分离方法。反渗透膜分离技术的分离效率或产水效率在50%~75%,经过反渗透膜分离后,出水水质相对较好,可直接回用或排放。分离后有机物就被截留在余下25%~50%的水中,形成浓溶液。浓溶液一方面还有待继续处理,另一方面会对膜造成污染和腐蚀破坏,处理不好会严重影响膜的使用寿命。
为了选择出工艺上较可靠,投资上较经济,管理上较方便的城市污水处理系统,结合当地的实际情况,我们调研了国内外污水处理厂的成熟经验和发展趋势,并进行了比较。
目前,国内外城市污水处理厂处理工艺大都采用一级处理和二级处理。一级处理是采用物理方法,主要通过格栅拦截、沉淀等手段去除废水中大块悬浮物和砂粒等物质。这一处理工艺国内外都已成熟,差别不大。二级处理则是采用生化方法,主要通过微生物的生命运动等手段来去除废水中的悬浮性,溶解性有机物以及氮、磷等营养盐。目前,这一处理工艺有多种方法,归结起来,有代表性的工艺主要有传统活性污泥、氧化沟、A/O或A2/O工艺、SBR及CCAS工艺等。目前,这几种代表工艺在国内外都有实际应用。

上一篇:一体化生活废水处理系统工艺 下一篇:医院废水一体化处理设备技术
热线电话 在线询价
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :