其他品牌 品牌
生产厂家厂商性质
武汉市所在地
DYDQ无局放成套耐压试验装置组成:
1.全自动工频耐压试验装置操作台(可选配手动型) HDYDQ-10kVA/100kV
2.无局放试验变压器 (可选配充气式或油浸式试验变压器,充气式变压器质量轻,油浸式变压器质量重,温升效果不明显) YDQW-10kVA/100kV
3.隔离滤波变压器 GLB-10kVA/200V
4.耦合电容器 OWF-100kV
5.无局放保护电阻 BR-100kV/8K
6.局部放电检测仪 HDJF-2002
一部分:HDYD-10kVA/100kV全自动工频耐压试验装置
一、产品简介
HDYDQ无局放成套耐压试验装置,是根据国家新行业试验标准而设计的试验设备,其安全可靠、功能强大、使用方便、维护简单,主要用于对各种电器产品、电气元件、绝缘材料等进行规定电压下的绝缘强度试验,以考核产品的绝缘水平,发现被试品的绝缘缺陷,衡量过电压的能力,是电力运行相关部门、电工电器制造企业、冶金、煤矿、电气化铁路相关部门、科研单位及高等院校等需要耐压试验设备的产品。
二、产品特点
1.电压、电流、时间、状态信息及提示信息等数据4.7尺大屏液晶显示,读数清晰、直观;
2.全中文界面,操作简单明了,可适应多种应用场合;
3.轻触式按键操作,所有功能均可通过按键设定,提高了产品的安全性、可靠性;
4.全数字式校准方式,摒弃了陈旧的电位器调整,现场使用方便,精度易于控制(此功能带密码保护);
5.按键直接设定试验变压器变比(此功能带密码保护),在连接不同电压等级的试验器时,应用灵活自如,真正做到一个控制台可与多台变压器相互配套使用;
6.状态提醒功能,全中文引导式操作,即使在无说明书的情况下亦可熟练操控;
7.试验过程中,屏上有闪烁的高压符号显示,时刻提醒操作人员注意安全;
8.试验结果显示功能,可自动判断试验结果(试验通过或试验失败),并能可靠记录试品过电流、闪洛或击穿时的电压;
9.试验结果声音报警功能,试验通过或试验失败时,设备会发出不同的报警声音,试验人员可直接由报警声音辨认试验的结果;
10.暂停功能,自动控制时,此功能可做到在任意点实现升压或降压的暂停,暂停时间可由试验人员灵活掌握,方便观察试品状态;
11.自动计时功能。自动控制时,当电压自动上升至设定值时,设备自动开始计时,当计时时间到,显示试验结果,设备自动回到零位;
12.手动计时功能,手动控制时,计时器可手动启动,当耐压时间到,设备自动回到零位(仅台式设备有此功能);
13.手动控制模式,此模式类似于传统的电动升/降压方式,上升/下降由按钮控制,设备自动判断上/下限位,有过电压保护;
14.升压速度智能控制,当电压达到目标电压80%时,升压速度会自动减慢,当达到目标电压90%时,升压速度进一步减慢;
15.采用硬、软件抗干扰技术相结合,性能稳定,抗干扰性强。
三、主要技术参数
1.额定容量(常用参数):
1kVA、2kVA、3kVA、5kVA、10kVA、15kVA、20kVA、30kVA、50kVA、100kVA、150kVA、200kVA、300kVA、500kVA
2.以下为10kVA的技术参数:
1.输入电流: 0 ~ 45.5A(可按参数定制)
2.仪表电压: 0 ~ 100V(可按参数定制)
3.输出电压: 0 ~ 250V(可按参数定制)
4.输出电流: 0 ~ 40A(可按参数定制)
5.电压测量精度: 0.5 %FS ±3 字
6.电流测量精度: 0.5 %FS ±3 字
7.计时长度: 0 ~ 9999 S(特殊模式可用于长时间工作)
8.电源电压: AC380V ±10%, 50Hz±1 Hz
9.使用环境:环境温度 0~50 ℃ 相对湿度 ≤85 RH
第二部分:YDQW-10kVA/100kV充气式无局放试验变压器
一、 概述:
YDQW充气式无局放试验变压器采用特殊结构及精密工艺使得其局放量能控制在较小的范围内。外形工艺精度高。适用于现场和试验室。方便适用。
二、结构:
1.YDQW系列产品其设计构思,材质选择及工艺流程都是全新的。因此不仅体积小、重量轻、外形美、而且各项技术指标都达到了<-98>>标准要求。
2.YDQW系列产品采用优质冷轧30Q-130取向硅钢片叠成多级圆柱框形铁芯,在特制的高强度绝缘筒上用QZ型导线直接连续绕制高压塔式线圈。外壳是适形尺寸,内充入SF6气体。
3.YDQW产品是在普通变压器的基础上加上特殊的电气结构及精细的制作工艺,使得此型号变压器局部放电量很小,有利于用局放仪在高电压状态下判别其它电气设备(如GIS、CVT、电缆附件、主变、互感器等)的局放量。
三、技术参数
1.额定容量:10KVA
2.输入电压:200V±10%
3.输出电压:0-100kV
4.额定电压下系统局放量≤5PC
5.输出电流:100mA
6.电压精度:AC 1.5%
7.电源失真度:<3%
8.绝缘介质:SF6气体
第三部分:GLB-10kVA/200V隔离滤波变压器
主要结构为隔离变压器及离波装置,可以有效摒除电源中存在的杂波及各种干扰。
1.输入电压:200V±10%
2.输出电压:200V±10%
3.额定容量:10KVA
4.空载损耗≤5%
5.阻抗电压≤5%
6.重量:30Kg
7.衰减效果: 10KHZ-100KHZ≥ 20db,100KHZ-30MKZ≥ 60db
第四部分:OWF-100kV耦合电容器分压器
1.节长800mm,
2.节重23Kg
3.一个顶环
4.电容量:500PF
5.局放量≤5PC
第五部分:BR-100kV/8K无局放保护电阻
1.外形尺寸:直径60mm*长度600mm
2.重量:3kg
3.配套试验连接线、屏蔽罩、屏蔽线等
第六部分:HDJF-2002型局部放电检测仪
一、概 述
HDJF-2002型局部放电检测仪是近年来新研制生产的又一新颖局部放电检测仪。广泛适用于变压器、互感器、高压开关、氧化锌避雷器、电力电缆等各种高电压电工产品的局部放电的测量,产品的型式试验,绝缘的运行监督等。
本仪器检测灵敏度高,试样电容复盖范围大,适用试品范围广,输入单元(检测阻抗)配备齐全,频带组合多(九种)。仪器经适当定标后能直读放电脉冲的放电量,指针式表头和数字式表头同时显示,指针式表头能按需要方便地选择对数刻度或线性刻度指示。
本仪器是电力部门、制造厂商和科研院所等单位广泛使用的实用的局部放电测试仪器。
二、主要技术指标
1.可测试品的电容量范围6pF--250μF
2.检测灵敏度(见简介下端表)
3、放大器频带:
①低端:10kHz、20kHz、40kHz任选
②:80kHz、200kHz、300kHz任选
4、放大器增益调节:
粗调六档,档间增益20±1db;细调范围>20db
5、时间窗:
1.窗宽:可调范围15°~150°;
2.窗位置:每一窗可旋转0°~170°;
3.两个时间窗可分别开或同时开。
6、放电量表:
1.指针式表头:
对数刻度1-10-100 误差<±5%(以满刻度计)
线性刻度0-1000 误差<±5%(以满刻度计)
2.数字表头:以3½LED数字表显示
0-100.0 误差<±5%(以满刻度计)
7、椭圆时基:
1.频率50Hz、100Hz、150Hz、200Hz、400Hz
2.椭圆旋转:以30°为一档,可作120°旋转。
3.显示方式:椭圆——直线。
4.高频时基椭圆可按输入电压(13∽275V)调节至正常大小,其摄取功率<1伏安。
8、试验电压表:
1.量程:100kV(可扩展)
2.显示:3½数字电压表指示
3.精度:优于±5%(以满刻度计)
9、内、外零标功能
10、体积:500×500×210 mm3
11、重量:约18kg
表一:
输入单元序号 | 调谐电容 | 单位 | 灵敏度(pC) (不对称电路) |
1 | 6-25-100 | pF | 0.02 |
2 | 25-100-400 | pF | 0.04 |
3 | 100-400-1500 | pF | 0.06 |
4 | 400-1500-6000 | pF | 0.1 |
5 | 1500-6000-25000 | pF | 0.2 |
6 | 0.006-0.025-0.1 | μF | 0.3 |
7 | 0.025-0.1-0.4 | μF | 0.5 |
8 | 0.1-0.4-1.5 | μF | 1 |
9 | 0.4-1.5-6.0 | μF | 1.5 |
10 | 1.5-6.0-25 | μF | 2.5 |
11 | 6.0-25-60 | μF | 5 |
12 | 25-60-250 | μF | 10 |
7R | 电 阻 | 0.5 |
更多详情请关注武汉华顶电力设备有限公
(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。3.2谐波污染
风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。
3.3电压稳定性
大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。
因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。
风电场风速条件变化也将引起风电场及其附近的电压波动。比如当风场平均风速加大,输入系统的有功功率增加,风电场母线电压开始有所降低,然后升高。这是因为当风场输入功率较小时,输入有功功率引起的电压升数值小,而吸收无功功率引起的电压降大;当风场输入功率增大时,输入有功引起的电压升数值增加较大,而吸收无功功率引起的电压降增加较小。如果考虑机端电容补偿,则风电场的电压增加。特别的,当风电场与系统间等值阻抗较大时,由于风速变动引起的电压波动现象更为明显。研究发现,使用电力电子转换装置的风力发电机,能够减少电压波动,比如并网时风电场机端若能提供瞬时无功,则启动电流也大大减小,对地方电网的冲击将大大减轻。值得一提的是,如果采用异步发电机作为风力发电机,除非采取必要的预防措施,如动态无功补偿、加固网络或者采用HVDC连接,否则当网络中某处发生三相接地故障时,将有可能导致全网的电压崩溃。
3.4无功控制、有功调度
大型风电场的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统中吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。因此风力发电机端往往配备有电容器组,进行无功补偿,从而提高电网运行质量及无局部放电成套耐压试验装置*降低成本。双馈型变速恒频风力发电机对这一系列问题有很好地解决作用,由于添加了控制环节,它具有了以下优良特性:
)可以实现对无功功率的控制--双馈发电机在实现电压控制的同时还可以从电网中吸收无功功率或是为电网提供无功补偿。
2)可以通过对转子励磁电流的独立控制实现了有功和无功功率的解耦控制。具体原理是,双馈发电机在转子侧的变频器通过转子电流d轴分量实现对转子转速和力矩的控制,无功和励磁则是通过转子电流的q轴分量来控制的。同时,电网侧的变频器也以类似的方式工作,d轴分量通过直流电压媒介电路控制有功功率,实现转子侧与电网侧变频器无局部放电成套耐压试验装置*之间的有功交换。