flexcell细胞应力加载仪,细胞培养力刺激装置应用文献
时间:2020-02-19 阅读:8545
美国Flexcell公司专注于细胞组织应力(牵张拉伸应力、三维水凝胶牵张拉伸应力、压应力和流体切应力等)加载刺激培养产品的设计和制造,美国Flexcell细胞应力加载培养与实时观察分析系统,包括:
1.1.FX-5000T体外细胞拉应力加载培养与实时观察分析系统
1.2.FX-5000C细胞组织压应力加载培养与实时观察分析系统
1.3.FX-5000TT细胞组织三维拉应力加载培养与实时观察分析系统
1.4.STR-4000流体剪切应力加载培养与实时观察分析系统。
其产品成熟度高、成功应用文献量达4000多篇,国内有包括上海交通大学、复旦大学、同济大学、上海第九医院、中科院力学所、北京大学第三医院、北航生物与医学工程学院、都医科大学、广州医科大学、南方科技大学、福建协和医院、南方医科大学近100家成功高校、医院及基础科研单位使用,无技术风险和使用风险,flexcell体外高通量细胞牵张拉伸力、压应力以及流体剪切力加载培养系统已成为细胞力学体外加载模型的黄金标准,是细胞组织力学研究者的shou选
一、FX-5000T/6000t 细胞牵张拉伸培养与实时观察系统(TENSION SYSTEM )应用文献:
BLADDER
BLADDER SMOOTH MUSCLE CELLS
1. Adam RM, Eaton SH, Estrada C, Nimgaonkar A, Shih SC, Smith LE, Kohane IS, Bagli D, Freeman MR. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics 20(1):36-44, 2004.
2. Adam RM, Roth JA, Cheng HL, Rice DC, Khoury J, Bauer SB, Peters CA, Freeman MR. Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J Urol 169(6):2388-2393, 2003.
3. Aitken KJ, Block G, Lorenzo A, Herz D, Sabha N, Dessouki O, Fung F, Szybowska M, Craig L, Bagli DJ. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol 169(2):459-470, 2006.
4. Aitken KJ, Tolg C, Panchal T, Leslie B, Yu J, Elkelini M, Sabha N, Tse DJ, Lorenzo AJ, Hassouna M, Bägli DJ. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain, hypoxia, and extracellular matrix remodeling) in rat bladder smooth muscle. Am J Pathol 176(1):304-319, 2010.
5. Chaqour B, Yang R, Sha Q. Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-B activation. J Biol Chem 281(29):20608-20622, 2006.
6. Estrada CR, Adam RM, Eaton SH, Bägli DJ, Freeman MR. Inhibition of EGFR signaling abrogates smooth muscle proliferation resulting from sustained distension of the urinary bladder. Lab Invest 86(12):1293-1302, 2006.
7. Galvin DJ, Watson RW, Gillespie JI, Brady H, Fitzpatrick JM. Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am J Physiol Renal Physiol 283(6):F1192-F1199, 2002.
8. Halachmi S, Aitken KJ, Szybowska M, Sabha N, Dessouki S, Lorenzo A, Tse D, Bagli DJ. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells. Cell Tissue Res 326(1):149-158, 2006.
9. Hubschmid U, Leong-Morgenthaler PM, Basset-Dardare A, Ruault S, Frey P. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Engineering 11(1-2):161-171, 2005.
10. Kushida N, Kabuyama Y, Yamaguchi O, Homma Y. Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol 281(4):C1165-C1172, 2001.
11. Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol 279(4):C1155-C1167, 2000.
12. Orsola A, Adam RM, Peters CA, Freeman MR. The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells. Urology 59(5):779-783, 2002.
13. Orsola A, Estrada CR, Nguyen HT, Retik AB, Freeman MR, Peters CA, Adam RM. Growth and stretch response of human exstrophy bladder smooth muscle cells: molecular evidence of normal intrinsic function. BJU Int 95(1):144-148, 2005.
14. Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M, Freeman MR. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol Cell Physiol 277:C294-C301, 1999.
15. Park JM, Borer JG, Freeman MR, Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol Cell Physiol 275:C1247-C1254, 1998.
16. Park JM, Yang T, Arend LJ, Schnermann JB, Peters CA, Freeman MR, Briggs JP. Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am J Physiol Renal Physiol 276:F129-F136, 1999.
17. Persson K, Sando JJ, Tuttle JB, Steers WD. Protein kinase C in cyclic stretch-induced nerve growth factor production by urinary tract smooth muscle cells. Am J Physiol Cell Physiol 269:C1018-C1024, 1995.
18. Steers WD, Broder SR, Persson K, Bruns DE, Ferguson JE 2nd, Bruns ME, Tuttle JB. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells. J Urol 160(3 Pt 1):908-912, 1998.
19. Upadhyay J, Aitken KJ, Damdar C, Bolduc S, Bagli DJ. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J Urol 169(2):750-755, 2003.
20. Wang Y, Xiong Z, Gong W, Zhou P, Xie Q, Zhou Z, Lu G. Expression of heat shock protein 27 correlates with actin cytoskeletal dynamics and contractility of cultured human bladder smooth muscle cells. Exp Cell Res 338(1):39-44, 2015.
21. Yang R, Amir J, Liu H, Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36(1):1-14, 2008.
22. Yu G, Bo S, Xiyu J, Enqing X. Effect of bladder outlet obstruction on detrusor smooth muscle cell: an in vitro study. Journal of Surgical Research 114(2):202-209, 2003.
23. Zhou D, Herrick DJ, Rosenbloom J, Chaqour B. Cyr61 mediates the expression of VEGF, v-integrin, and -actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol 98(6):2344-2354, 2005.
UROTHELIAL & UROEPITHELIAL CELLS
24. Jerde TJ, Mellon WS, Bjorling DE, Nakada SY. Evaluation of urothelial stretch-induced cyclooxygenase-2 expression in novel human cell culture and porcine in vivo ureteral obstruction models. J Pharmacol Exp Ther 317(3):965-972, 2006.
25. Jerde TJ, Mellon WS, Bjorling DE, Checura CM, Owusu-Ofori K, Parrish JJ, Nakada SY. Stretch induction of cyclooxygenase-2 expression in human urothelial cells is calcium- and protein kinase C -dependent. Mol Pharmacol 73(1):18-26, 2008. Erratum in: Mol Pharmacol 74(2):539, 2008.
26. Sun Y, Chai TC. Effects of dimethyl sulphoxide and heparin on stretch-activated ATP release by bladder urothelial cells from patients with interstitial cystitis. BJU Int 90(4):381-385, 2002.
27. Sun Y, Chai TC. Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J Urol 171(1):448-452, 2004.
28. Sun Y, Keay S, De Deyne PG, Chai TC. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. Journal of Urology 166(5):1951-1956, 2001.
29. Sun Y, Keay S, DeDeyne P, Chai T. Stretch-activated release of adenosine triphosphate by bladder uroepithelia is augmented in interstitial cystitis [abstract]. Urology 57(6 Suppl 1):131, 2001.
30. Sun Y, MaLossi J, Jacobs SC, Chai TC. Effect of doxazosin on stretch-activated adenosine triphosphate release in bladder urothelial cells from patients with benign prostatic hyperplasia. Urology 60(2):351-356, 2002.
BONE
1. Acosta FL, Pham M, Safai Y, Buser Z. Improving bone formation in osteoporosis through in vitro mechanical stimulation compared to biochemical stimuli. Journal of Nature and Science 1(4):e63, 2015.
2. Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O'Brien CA, Manolagas SC, Bellido T. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282(35):25501–25508, 2007.
3. Bellido T, Plotkin LI. Detection of apoptosis of bone cells in vitro. Methods in Molecular Biology, Vol. 455: Osteoporosis: Methods and Protocols. Edited by Westendorf JJ. Humana Press: Totowa, 51-75, 2008.
4. Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, Thibboneir A, Capla JM, McCarthy JG, Gurtner GC. Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res 143(2):329-36, 2007.
5. Boutahar N, Guignandon A, Vico L, Lafage-Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem 279(29):30588-30599, 2004.
6. Buckley MJ, Banes AJ, Jordan RD. The effects of mechanical strain on osteoblasts in vitro. J Oral Maxillofac Surg 48(3):276-282, 1990.
7. Buckley MJ, Banes AJ, Levin LG, Sumpio BE, Sato M, Jordan R, Gilbert J, Link GW, Tran Son Tay R. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner 4(3):225-236, 1988.
8. Calvalho RS, Bumann A, Schwarzer C, Scott E, Yen EH. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. Eur J Orthod 18(3):227-235, 1996.
9. Carvalho RS, Scott JE, Suga DM, Yen EH. Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. J Bone Miner Res 9(7):999-1011, 1994.
10. Carvalho RS, Scott JE, Yen EH. The effects of mechanical stimulation on the distribution of 1 integrin and expression of 1-integrin mRNA in TE-85 human osteosarcoma cells. Arch Oral Biol 40(3):257-264, 1995.
11. Case N, Ma M, Sen B, Xie Z, Gross TS, Rubin J. -catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283(43):29196-29205, 2008.
12. Chen X, Macica CM, Ng KW, Broadus AE. Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res 20(8):1454-61, 2005.
13. Chen YJ, Chang MC, Yao CC, Lai HH, Chang J, Jeng JH. Mechanoregulation of osteoblast-like MG-63 cell activities by cyclic stretching. J Formos Med Assoc 113(7):447-53, 2014.
14. Chung E, Sampson AC, Rylander MN. Influence of heating and cyclic tension on the induction of heat shock proteins and bone-related proteins by MC3T3-E1 cells. Biomed Res Int 2014:354260, 2014.
15. Cillo JE Jr, Gassner R, Koepsel RR, Buckley MJ. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(2):147-154, 2000.
16. Delaine-Smith RM, Javaheri B, Helen Edwards J, Vazquez M, Rumney RM. Preclinical models for in vitro mechanical loading of bone-derived cells. Bonekey Rep 4:728, 2015.
17. Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol Renal Physiol 267:F909-F916, 1994.
18. Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207(2):454-460, 2006.
19. Faure C, Linossier MT, Malaval L, Lafage-Proust MH, Peyroche S, Vico L, Guignandon A. Mechanical signals modulated vascular endothelial growth factor-A (VEGF-A) alternative splicing in osteoblastic cells through actin polymerisation. Bone 42(6):1092-1101, 2008.
20. Faure C, Vico L, Tracqui P, Laroche N, Vanden-Bossche A, Linossier MT, Rattner A, Guignandon A. Functionalization of matrices by cyclically stretched osteoblasts through matrix targeting of VEGF. Biomaterials 31(25):6477-6484, 2010.
21. Gao J, Fu S, Zeng Z, Li F, Niu Q, Jing D, Feng X. Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism. Mol Med Rep 14(1):218-24, 2016.
22. Geng WD, Boskovic G, Fultz ME, Li C, Niles RM, Ohno S, Wright GL. Regulation of expression and activity of four PKC isozymes in confluent and mechanically stimulated UMR-108 osteoblastic cells. J Cell Physiol 189(2):216-228, 2001.
23. Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T. Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288(12):8168-8175, 2013.
24. Granet C, Boutahar N, Vico L, Alexandre C, Lafage-Proust MH. MAPK and SRC-kinases control EGR-1 and NF-B inductions by changes in mechanical environment in osteoblasts. Biochem Biophys Res Commun 284(3):622-631, 2001.
25. Granet C, Vico AG, Alexandre C, Lafage-Proust MH. MAP and src kinases control the induction of AP-1 members in response to changes in mechanical environment in osteoblastic cells. Cellular Signaling 14(8):679-688, 2002.
26. Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R. Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068:214-224, 2006.
27. Guignandon A, Akhouayri O, Usson Y, Rattner A, Laroche N, Lafage-Proust MH, Alexandre C, Vico L. Focal contact clustering in osteoblastic cells under mechanical stresses: microgravity and cyclic deformation. Cell Commun Adhes 10(2):69-83, 2003.
28. Guignandon A, Boutahar N, Rattner A, Vico L, Lafage-Proust MH. Cyclic strain promotes shuttling of PYK2/Hic-5 complex from focal contacts in osteoblast-like cells. Biochem Biophys Res Commun 343(2):407-14, 2006.
29. Han L, Zhang X, Tang G. Indian Hedgehog signaling is involved in the stretch induced proliferation of osteoblast. Hua Xi Kou Qiang Yi Xue Za Zhi 30(3):234-8, 2012.
30. Hara F, Fukuda K, Asada S, Matsukawa M, Hamanishi C. Cyclic tensile stretch inhibition of nitric oxide release from osteoblast-like cells is both G protein and actin-dependent. Journal of Orthopaedic Research 19(1):126-131, 2001.
31. Hara F, Fukuda K, Ueno M, Hamanishi C, Tanaka S. Pertussis toxin-sensitive G proteins as mediators of stretch-induced decrease in nitric-oxide release of osteoblast-like cells. J Orthop Res 17(4):593-597, 1999.
32. Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 20(7):1103-1113, 2005.
33. Ho AM, Marker PC, Peng H, Quintero AJ, Kingsley DM, Huard J. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation. BMC Dev Biol 8:35, 2008.
34. Jansen JH, Weyts FA, Westbroek I, Jahr H, Chiba H, Pols HA, Verhaar JA, van Leeuwen JP, Weinans H. Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. Journal of Cellular Biochemistry 93:542–551, 2004.
35. Kameyama S, Yoshimura Y, Kameyama T, Kikuiri T, Matsuno M, Deyama Y, Suzuki K, Iida J. Short-term mechanical stress inhibits osteoclastogenesis via suppression of DC-STAMP in RAW264.7 cells. Int J Mol Med 31(2):292-8, 2013.
36. Kao CT, Chen CC, Cheong UI, Liu SL, Huang TH. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension. Laser Phys 24:8, 085605, 2014.
37. Karasawa Y, Tanaka H, Nakai K, Tanabe N, Kawato T, Maeno M, Shimizu N. Tension force downregulates matrix metalloproteinase expression and upregulates the expression of their inhibitors through MAPK signaling pathways in MC3T3-E1 cells. Int J Med Sci 12(11):905-13, 2015.
38. Kariya T, Tanabe N, Shionome C, Kawato T, Zhao N, Maeno M, Suzuki N, Shimizu N. Tension force-induced ATP promotes osteogenesis through P2X7 receptor in osteoblasts. J Cell Biochem 116(1):12-21, 2015.
39. Kim DW, Lee HJ, Karmin JA, Lee SE, Chang SS, Tolchin B, Lin S, Cho SK, Kwon A, Ahn JM, Lee FY. Mechanical loading differentially regulates membrane-bound and soluble RANKL availability in MC3T3-E1 cells. Ann N Y Acad Sci 1068:568-72, 2006.
40. Knoll B, McCarthy TL, Centrella M, Shin J. Strain-dependent control of transforming growth factor- function in osteoblasts in an in vitro model: biochemical events associated with distraction osteogenesis. Plastic & Reconstructive Surgery 116(1):224-233, 2005.
41. Li L, Chen M, Deng L, Mao Y, Wu W, Chang M, Chen H. The effect of mechanical stimulation on the expression of 2, 1, 3 integrins and the proliferation, synthetic function in rat osteoblasts. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20(2):187-192, 2003.
42. Li L, Deng L, Chen M, Wu W, Mao Y, Chen H. The effect of mechanical stimulation on the proliferation and synthetic function of osteoblasts from osteoporotic rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 21(3):341-346, 349, 2004.
43. Li X, Zhang XL, Shen G, Tang GH. Effects of tensile forces on serum deprivation-induced osteoblast apoptosis: expression analysis of caspases, Bcl-2, and Bax. Chin Med J (Engl) 125(14):2568-2573, 2012.
44. Li Y, Tang L, Duan Y, Ding Y. Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells. BMC Res Notes 3:309, 2010.
45. Liegibel UM, Sommer U, Tomakidi P, Hilscher U, Van Den Heuvel L, Pirzer R, Hillmeier J, Nawroth P, Kasperk C. Concerted action of androgens and mechanical strain shifts bone metabolism from high turnover into an osteoanabolic mode. J Exp Med 196(10):1387-1392, 2002.
46. Lima F, Vico L, Lafage-Proust MH, van der Saag P, Alexandre C, Thomas T. Interactions between estrogen and mechanical strain effects on U2OS human osteosarcoma cells are not influenced by estrogen receptor type. Bone 35(5):1127-1135, 2004.
47. Liu X, Zhang X, Luo ZP. Strain-related collagen gene expression in human osteoblast-like cells. Cell Tissue Res 322(2):331-334, 2005.
48. Narutomi M, Nishiura T, Sakai T, Abe K, Ishikawa H. Cyclic mechanical strain induces interleukin-6 expression via prostaglandin E2 production by cyclooxygenase-2 in MC3T3-E1 osteoblast-like cells. J Oral Biosci 49(1):65-73, 2007.
49. Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, Yoshimoto Y, Ishikawa H, Chihara K, Takano-Yamamoto T, Fujita T, Mikuni-Takagaki Y. V3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab 24(6):498-504, 2006.
50. Motokawa M, Kaku M, Tohma Y, Kawata T, Fujita T, Kohno S, Tsutsui K, Ohtani J, Tenjo K, Shigekawa M, Kamada H, Tanne K. Effects of cyclic tensile forces on the expression of vascular
endothelial growth factor (VEGF) and macrophage-colony-stimulating factor (M-CSF) in murine osteoblastic MC3T3-E1 cells. J Dent Res 84(5):422-427, 2005.
51. Myers KA, Rattner JB, Shrive NG, Hart DA. Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun 364(2):214-219, 2007.
52. Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol 289(3):C633-643, 2005.
53. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
54. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-B pathways dependent. Exp Cell Res 315(11):1990-2000, 2009.
55. Rath B, Springorum HR, Deschner J, Luring C, Tingart M, Grifka J, Schaumburger J, Grassel S. Regulation of gene expression in articular cells is influenced by biomechanical loading. Central European Journal of Medicine 2012.
56. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ. Wnt/-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281(42):31720-31728, 2006.
57. Sano S, Okawa A, Nakajima A, Tahara M, Fujita K, Wada Y, Yamazaki M, Moriya H, Sasho T. Identification of Pip4k2 as a mechanical stimulus responsive gene and its expression during musculoskeletal tissue healing. Cell Tissue Res 323(2):245-252, 2006.
58. Shi GX, Zheng XF, Zhu C, Li B, Wang YR, Jiang SD, Jiang LS. Evidence of the role of R-spondin 1 and its receptor Lgr4 in the transmission of mechanical stimuli to biological signals for bone formation. Int J Mol Sci 18(3), pii: E564, 2017.
59. Siddhivarn C, Banes A, Champagne C, Riche EL, Weerapradist W, Offenbacher S. Prostaglandin D2 pathway and peroxisome proliferator-activated receptor -1 expression are induced by mechanical loading in an osteoblastic cell line. J Periodontal Res 41(2):92-100, 2006.
60. Siddhivarn C, Banes A, Champagne C, Riche EL, Weerapradist W, Offenbacher S. Mechanical loading and Δ12prostaglandin J2 induce bone morphogenetic protein-2, peroxisome proliferator-activated receptor γ-1, and bone nodule formation in an osteoblastic cell line. J Periodontal Res 42(5):383-392, 2007.
61. Stanford CM, Stevens JW, Brand RA. Cellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA. Journal of Biomechanics 28(12):1419-1427, 1995.
62. Sun Z, Tee BC. Molecular variations related to the regional differences in periosteal growth at the mandibular ramus. Anat Rec (Hoboken) 294(1):79-87, 2011.
63. Suzuki N, Yoshimura Y, Deyama Y, Suzuki K, Kitagawa Y. Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int J Mol Med 21(3):291-296, 2008.
64. Tang L, Lin Z, Li YM. Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem Biophys Res Commun 344(1):122-128, 2006.
65. Thompson MS, Epari DR, Bieler F, Duda GN. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H 224(12):1533-1541, 2010.
66. Tomlinson RE, Li Z, Li Z, Minichiello L, Riddle RC, Venkatesan A, Clemens TL. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 114(18):E3632-E3641, 2017.
67. Toyoshita Y, Iida S, Koshino H, Hirai T, Yokoyama A. CYP24 promoter activity is affected by mechanical stress and mitogen-activated protein kinase in MG63 osteoblast-like cells. Nihon Hotetsu Shika Gakkai Zasshi 52(2):171-174, 2008.
68. Vadiakas GP, Banes AJ. Verapamil decreases cyclic load-induced calcium incorporation in ROS 17/2.8 osteosarcoma cell cultures. Matrix 12(6):439-447, 1992.
69. Visconti LA, Yen EH, Johnson RB. Effect of strain on bone nodule formation by rat osteogenic cells in vitro. Archives of Oral Biology 49(6):485-492, 2004.
70. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway. PLoS One 9(3):e91730, 2014.
71.Wu Y, Zhang X, Zhang P, Fang B, Jiang L. Intermittent traction stretch promotes the osteoblasticdifferentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect Tissue Res53(6):451-9, 2012.
72.Yamamoto N, Fukuda K, Matsushita T, Matsukawa M, Hara F, Hamanishi C. Cyclic tensile stretchstimulates the release of reactive oxygen species from osteoblast-like cells. Calcif Tissue Int 76(6):433-8,2005.
73.Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin Xiao LW, Yang M, Dong J, Xie H, Sui GL, He YL,Lei JX, Liao EY, Yuan X. Stretch-inducible expression of connective tissue growth factor (CTGF) in humanosteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 28(2):297-304, 2011.
74.Yu KW, Yao CC, Jeng JH, Shieh HY, Chen YJ. Periostin inhibits mechanical stretch-induced apoptosis inosteoblast-like MG-63 cells. J Formos Med Assoc 2018 Jan 3. pii: S0929-6646(17)30820-3. doi:10.1016/j.jfma.2017.12.008. [Epub ahead of print].
75.Zeng Z, Jing D, Zhang X, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism inosteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med 36(4):947-56, 2015.
76.Zeng Z, Yin X, Zhang X, Jing D, Feng X. Cyclic stretch enhances bone morphogenetic protein-2-inducedosteoblastic differentiation through the inhibition of Hey1. Int J Mol Med 36(5):1273-1281, 2015.
77.Zhang C, Liang G, Zhang Y, Hu Y. Response to dynamic strain in human periosteal cells grown in vitro.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23(3):546-550, 2006.
78.Zhu J, Zhang X, Wang C, Peng X, Zhang X. Different magnitudes of tensile strain induce humanosteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci9(12):2322-2332, 2008.
79.Ziambaras K, Lecanda F, Steinberg TH, Civitelli R. Cyclic stretch enhances gap junctional communicationbetween osteoblastic cells. J Bone Miner Res 13(2):218-28, 1998.
80.Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, Li Z, Peng J, Wang P, Shen C, Huang Y, Xu J, Zhang X,Chen X. microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation throughtargeting Runx2. J Bone Miner Res 30(2):330-45, 2015.
CARDIOVASCULATURE
CARDIOMYOCYTES AND FIBROBLASTS
1.Alibin CP, Kopilas MA, Anderson HD. Suppression of cardiac myocyte hypertrophy by conjugated linoleicacid: role of peroxisome proliferator-activated receptors and . J Biol Chem 283(16):10707-10715, 2008.
2.Anderson HD, Wang F, Gardner DG. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene. J Biol Chem 279(10):9287-9297, 2004.
3.Argento G, de Jonge N, Söntjens SH, Oomens CW, Bouten CV, Baaijens FP. Modeling the impact ofscaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.Biomech Model Mechanobiol 14(3):603-13, 2015.
4.Askevold ET, Aukrust P, Nymo SH, Lunde IG, Kaasbøll OJ, Aakhus S, Florholmen G, Ohm IK, StrandME, Attramadal H, Fiane A, Dahl CP, Finsen AV, Vinge LE, Christensen G, Yndestad A, Gullestad L,Latini R, Masson S, Tavazzi L; GISSI-HF Investigators, Ueland T. The cardiokine secreted Frizzled-related protein 3, a modulator of Wnt signalling, in clinical and experimental heart failure. J Intern Med275(6):621-30, 2014.
5.Baba HA, Stypmann J, Grabellus F, Kirchhof P, Sokoll A, Schafers M, Takeda A, Wilhelm MJ, ScheldHH, Takeda N, Breithardt G, Levkau B. Dynamic regulation of MEK/Erks and Akt/GSK-3 in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as apossible molecular mechanism. Cardiovascular Research 59(2):390-399, 2003.
6.Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, de Tombe PP, Russell B.Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution andamounts of oligomeric muscle LIM protein. Am J Physiol Heart Circ Physiol 292(1):H259-H269, 2007.
7.Boateng SY, Lateef SS, Mosley W, Hartman TJ, Hanley L, Russell B. RGD and YIGSR synthetic peptidesfacilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatalcardiac myocytes. Am J Physiol Cell Physiol 288(1):C30-C38, 2005.
8.Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B. Myocyte remodeling in response to hypertrophicstimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47(4):426-35, 2009.
9. Boerboom RA, Rubbens MP, Driessen NJ, Bouten CV, Baaijens FP. Effect of strain magnitude on the tissue properties of engineered cardiovascular constructs. Annals of Biomedical Engineering 36(2):244–253, 2008.
10. Boerma M, van der Wees CG, Vrieling H, Svensson JP, Wondergem J, van der Laarse A, Mullenders LH, van Zeeland AA. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation. BMC Genomics 6(1):6, 2005.
11. Blaauw E, van Nieuwenhoven FA, Willemsen P, Delhaas T, Prinzen FW, Snoeckx LH, van Bilsen M, van der Vusse GJ. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 299(3):H780-H787, 2010.
12. Cao L, Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25(2):227-234, 1995.
13. Cheng WP, Wang BW, Lo HM, Shyu KG. Mechanical stretch induces apoptosis regulator TRB3 in cultured cardiomyocytes and volume-overloaded heart. PLoS One 10(4):e0123235, 2015.
14. Choudhary R, Palm-Leis A, Scott RC 3rd, Guleria RS, Rachut E, Baker KM, Pan J. All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am J Physiol Heart Circ Physiol 294(2):H633-H644, 2008.
15. Chua SK, Wang BW, Lien LM, Lo HM, Chiu CZ, Shyu KG. Mechanical stretch inhibits microRNA499 via p53 to regulate calcineurin-A expression in rat cardiomyocytes. PLoS One 11(2):e0148683, 2016.
16. de Jonge HW, Dekkers DH, Tilly BC, Lamers JM. Cyclic stretch and endothelin-1 mediated activation of chloride channels in cultured neonatal rat ventricular myocytes. Clin Sci (Lond) 103(48):148S-151S, 2002.
17. de Jonge N, Kanters FM, Baaijens FP, Bouten CV. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs. Ann Biomed Eng 41(4):763-74, 2013.
18. De Jong AM, Maass AH, Oberdorf-Maass SU, De Boer RA, Van Gilst WH, Van Gelder IC. Cyclical stretch induces structural changes in atrial myocytes. J Cell Mol Med 17(6):743-53, 2013.
19. Dhein S, Schreiber A, Steinbach S, Apel D, Salameh A, Schlegel F, Kostelka M, Dohmen PM, Mohr FW. Mechanical control of cell biology. Effects of cyclic mechanical stretch on cardiomyocyte cellular organization. Prog Biophys Mol Biol 115(2-3):93-102, 2014.
20. Drolet MC, Desbiens-Brassard V, Roussel E, Tu V, Couet J, Arsenault M. Blockade of the acute activation of mTOR complex 1 decreases hypertrophy development in rats with severe aortic valve regurgitation. Springerplus 4:435, 2015.
21. Espinoza-Derout J, Wagner M, Shahmiri K, Mascareno E, Chaqour B, Siddiqui MA. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 75(1):129-138, 2007.
22. Facundo HT, Brainard RE, Watson LJ, Ngoh GA, Hamid T, Prabhu SD, Jones SP. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 302(10):H2122-30, 2012.
23. Fan D, Takawale A, Basu R, Patel V, Lee J, Kandalam V, Wang X, Oudit GY, Kassiri Z. Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc Res 103(2):268-80, 2014.
24. Fan D, Takawale A, Shen M, Samokhvalov V, Basu R, Patel V, Wang X, Fernandez-Patron C, Seubert JM, Oudit GY, Kassiri Z. A disintegrin and metalloprotease-17 regulates pressure overload-induced myocardial hypertrophy and dysfunction through proteolytic processing of integrin β1. Hypertension 68(4):937-48, 2016.
25. Feng H, Gerilechaogetu F, Golden HB, Nizamutdinov D, Foster DM, Glaser SS, Dostal DE. p38α MAPK inhibits stretch-induced JNK activation in cardiac myocytes through MKP-1. Int J Cardiol 203:145-55, 2016.
26. Földes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J, Schneider MD, Ali NN, Harding SE. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol 50(2):367-376, 2011.
27. Fu L, Wei CC, Powell PC, Bradley WE, Ahmad S, Ferrario CM, Collawn JF, Dell'Italia LJ. Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload. J Mol Cell Cardiol 92:1-9, 2016.
28. Funari BJ, Witt MR, Clause KM, Keller BB, Tobita K, Ralphe JC. The impact of energy substrate on contractile performance in a neonatal rat engineered cardiac tissue model [abstract]. Pediatric Academic Societies Annual Meeting, Toronto, Canada, 2007.
29. Gardner DG, Newman ED, Nakamura KK, Nguyen KP. Endothelin increases the synthesis and secretion of atrial natriuretic peptide in neonatal rat cardiocytes. Am J Physiol Endocrinol Metab 261:E177-E182, 1991.
30. Guichard JL, Benavides GA, Ballinger S, Darley-Usmar VM, Dell_Italia LJ. Mitochondrial genetic background modulatesthe mitochondrial and cytoskeletal response to cyclical stretch in isolated adult cardiomyocytes [abstract]. Journal of the American College of Cardiology 63(12):A869, 2014.
31. Gupta S, Sen S. Myotrophin-kB DNA interaction in the initiation process of cardiac hypertrophy. Biochimica et Biophysica Acta (BBA)/Molecular Cell Research 1589(3):247-260, 2002.
32. Harada M, Saito Y, Nakagawa O, Miyamoto Y, Ishikawa M, Kuwahara K, Ogawa E, Nakayama M, Kamitani S, Hamanaka I, Kajiyama N, Masuda I, Itoh H, Tanaka I, Nakao K. Role of cardiac nonmyocytes in cyclic mechanical stretch-induced myocyte hypertrophy. Heart Vessels Suppl 12:198-200, 1997.
33. Hariharan N, Ikeda Y, Hong C, Alcendor RR, Usui S, Gao S, Maejima Y, Sadoshima J. Autophagy plays an essential role in mediating regression of hypertrophy during unloading of the heart. PLoS One 8(1):e51632, 2013.
34. Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, Hilfiker-Kleiner D, Caroni P, Kraft T, Kaiser RA, Molkentin JD, Drexler H, Wollert KC. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci U S A 102(5):1655-1660, 2005.
35. Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G, Podewski E, Grote K, Kiian I, Wollert KC, Hilfiker A, Drexler H. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109(18):2227-2233, 2004.
36. Hooper CL, Dash PR, Boateng SY. Lipoma preferred partner is a mechanosensitive protein regulated by nitric oxide in the heart. FEBS Open Bio 2:135-44, 2012.
37. Husse B, Sopart A, Isenberg G. Cyclical mechanical stretch-induced apoptosis in myocytes from young rats but necrosis in myocytes from old rats. Am J Physiol Heart Circ Physiol 285:1521-1527, 2003.
38. Kartasalo K, Pölönen RP, Ojala M, Rasku J, Lekkala J, Aalto-Setälä K, Kallio P. CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels. BMC Bioinformatics 16:344, 2015.
39. Kasmi KE, Myers C, Flockton A, Riddle S, McKeon BA, Frid M, Brodsky K, Eltzschig H, Stenmark KR. Mechanical stretch combines with adventitial fibroblast-derived signals to promote macrophage activation through metabolic reprogramming in vascular remodeling [abstract]. Am J Respir Crit Care Med 193:A2227, 2016.
40. Koitabashi N, Arai M, Kogure S, Niwano K, Watanabe A, Aoki Y, Maeno T, Nishida T, Kubota S, Takigawa M, Kurabayashi M. Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension 49(5):1120-1127, 2007.
41. Koivisto E, Jurado Acosta A, Moilanen AM, Tokola H, Aro J, Pennanen H, Säkkinen H, Kaikkonen L, Ruskoaho H, Rysä J. Characterization of the regulatory mechanisms of activating transcription factor 3 by hypertrophic stimuli in rat cardiomyocytes. PLoS One 9(8):e105168, 2014.
42. Lal H, Verma SK, Golden HB, Foster DM, Smith M, Dostal DE. Stretch-induced regulation of angiotensinogen gene expression in cardiac myocytes and fibroblasts: opposing roles of JNK1/2 and p38 MAP kinases. J Mol Cell Cardiol 45(6):770-778, 2008.
43. Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE. Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through 1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43(2):137-147, 2007.
44. Lateef SS, Boateng S, Ahluwalia N, Hartman TJ, Russell B, Hanley L. Three-dimensional chemical structures by protein functionalized micron-sized beads bound to polylysine-coated silicone surfaces. J Biomed Mater Res A 72(4):373-380, 2005.
45. Lateef SS, Boateng S, Hartman TJ, Crot CA, Russell B, Hanley L. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials 23(15):3159-3168, 2002.
46. Lee EL, Watson KC, von Recum HA. Contractile protein and extracellular matrix secretion of cell monolayer sheets following cyclic stretch. Cardiovascular Engineering and Technology 3(3):302-310, 2012.
47. Liang F, Atakilit A, Gardner DG. Integrin dependence of brain natriuretic peptide gene promoter activation by mechanical strain. J Biol Chem 275(27):20355-20360, 2000.
48. Liang F, Gardner DG. Autocrine/paracrine determinants of strain-activated brain natriuretic peptide gene expression in cultured cardiac myocytes. J Biol Chem 273(23):14612-14619, 1998.
49. Liang F, Gardner DG. Mechanical strain activates BNP gene transcription through a p38/NF-B-dependent mechanism. J Clin Invest 104(11):1603-1612, 1999.
50. Liang F, Kovacic-Milivojevic B, Chen S, Cui J, Roediger F, Intengan H, Gardner DG. Signaling mechanisms underlying strain-dependent brain natriuretic peptide gene transcription. Can J Physiol Pharmacol 79(8):640-645, 2001.
51. Liang F, Lu S, Gardner DG. Endothelin-dependent and -independent components of strain-activated brain natriuretic peptide gene transcription require extracellular signal regulated kinase and p38 mitogen-activated protein kinase. Hypertension 35(1 Pt 2):188-192, 2000.
52. Liang F, Wu J, Garami M, Gardner DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 272(44):28050-28056, 1997.
53. Liang YJ, Lai LP, Wang BW, Juang SJ, Chang CM, Leu JG, Shyu KG. Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-B in cardiomyocytes. Cardiovasc Res 72(2):303-12, 2006.
54. Lin YH, Swanson ER, Li J, Mkrtschjan MA, Russell B. Cyclic mechanical strain of myocytes modifies CapZβ1 post translationally via PKCε. J Muscle Res Cell Motil 36(4-5):329-37, 2015.
55. Lindahl GE, Chambers RC, Papakrivopoulou J, Dawson SJ, Jacobsen MC, Bishop JE, Laurent GJ. Activation of fibroblast procollagen 1(I) transcription by mechanical strain is transforming growth factor--dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 277(8):6153-6161, 2002.
56. Malhotra R, D'Souza KM, Staron ML, Birukov KG, Bodi I, Akhter SA. Gq-mediated activation of GRK2 by mechanical stretch in cardiac myocytes: the role of protein kinase C. J Biol Chem 285(18):13748-13760, 2010.
57. Marin TM, Clemente CF, Santos AM, Picardi PK, Pascoal VD, Lopes-Cendes I, Saad MJ, Franchini KG. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ Res 103(8):813-824, 2008.
58. Mauretti A, Bax NA, van Marion MH, Goumans MJ, Sahlgren C, Bouten CV. Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integr Biol (Camb) 8(9):991-1001, 2016.
59. Miller CE, Donlon KJ, Toia L, Wong CL, Chess PR. Cyclic strain induces proliferation of cultured embryonic heart cells. In Vitro Cell Dev Biol Anim 36(10):633-639, 2000.
60. Nadruz W Jr, Corat MA, Marin TM, Guimaraes Pereira GA, Franchini KG. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc Res 68(1):87-97, 2005.
61. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87(4):2107-13, 2015.
62. Niu A, Wang B, Li YP. TNFα shedding in mechanically stressed cardiomyocytes is mediated by Src activation of TACE. J Cell Biochem 116(4):559-65, 2015.
63. Palm-Leis A, Singh US, Herbelin BS, Olsovsky GD, Baker KM, Pan J. Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J Biol Chem 279(52):54905-54917, 2004.
64. Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202(2):536-553, 2005.
65. Pedrozo Z, Criollo A, Battiprolu PK, Morales CR, Contreras-Ferrat A, Fernández C, Jiang N, Luo X, Caplan MJ, Somlo S, Rothermel BA, Gillette TG, Lavandero S, Hill JA. Polycystin-1 is a cardiomyocyte mechanosensor that governs L-type Ca2+ channel protein stability. Circulation 131(24):2131-42, 2015.
66. Persoon-Rothert M, van der Wees KG, van der Laarse A. Mechanical overload-induced apoptosis: a study in cultured neonatal ventricular myocytes and fibroblasts. Mol Cell Biochem 241(1-2):115-24, 2002.
67. Pikkarainen S, Tokola H, Kerkela R, Ilves M, Makinen M, Orzechowski HD, Paul M, Vuolteenaho O, Ruskoaho H. Inverse regulation of preproendothelin-1 and endothelin-converting enzyme-1 genes in cardiac cells by mechanical load. Am J Physiol Regul Integr Comp Physiol 290(6):R1639-R1645, 2006.
68. Pikkarainen S, Tokola H, Kerkela R, Majalahti-Palviainen T, Vuolteenaho O, Ruskoaho H. Endothelin-1-specific activation of B-type natriuretic peptide gene via p38 mitogen-activated protein kinase and nuclear ETS factors. J Biol Chem 278(6):3969-3975, 2003.
69. Pikkarainen S, Tokola H, Majalahti-Palviainen T, Kerkela R, Hautala N, Bhalla SS, Charron F, Nemer M, Vuolteenaho O, Ruskoaho H. GATA-4 is a nuclear mediator of mechanical stretch-activated hypertrophic program. J Biol Chem 278(26):23807-23816, 2003.
10
70.Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA,Singh K, Pagano P, Colucci WS, Sawyer DB. Reactive oxygen species mediate amplitude-dependenthypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453-460,2001.
71.Prante C, Milting H, Kassner A, Farr M, Ambrosius M, Schön S, Seidler DG, Banayosy AE, Körfer R,Kuhn J, Kleesiek K, Götting C. Transforming growth factor 1-regulated xylosyltransferase I activity inhuman cardiac fibroblasts and its impact for myocardial remodeling. J Biol Chem 282(36):26441-26449,2007.
72.Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF,Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human inducedpluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121-36, 2015.
73.Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MM, van Assen HC, TerHaar Romeny BM,Baaijens FP, Bouten CV. Quantification of the temporal evolution of collagen orientation in mechanicallyconditioned engineered cardiovascular tissues. Ann Biomed Eng 37(7):1263-1272, 2009.
74.Ruwhof C, van Wamel AE, Egas JM, van der Laarse A. Cyclic stretch induces the release of growthpromoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem 208(1-2):89-98, 2000.
75.Ruwhof C, van Wamel AE, van der Valk LJ, Schrier PI, van der Laarse A. Direct, autocrine andparacrine effects of cyclic stretch on growth of myocytes and fibroblasts isolated from neonatal rat ventricles.Arch Physiol Biochem 109(1):10-17, 2001.
76.Ruwhof C, van Wamel JT, Noordzij LA, Aydin S, Harper JC, van der Laarse A. Mechanical stressstimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. CellCalcium 29(2):73-83, 2001.
77.Säkkinen H, Aro J, Kaikkonen L, Ohukainen P, Näpänkangas J, Tokola H, Ruskoaho H, Rysä J.Mitogen-activated protein kinase p38 target regenerating islet-derived 3γ expression is upregulated in cardiacinflammatory response in the rat heart. Physiol Rep 4(20), 2016. pii: e12996.
78.Salameh A, Apel D, Gonzalez Casanova J, von Salisch S, Mohr FW, Daehnert I, Dhein S. On thedifferent roles of AT1 and AT2 receptors in stretch-induced changes of connexin43 expression andlocalisation. Pflugers Arch 464(5):535-47, 2012.
79.Senyo SE, Koshman YE, Russell B. Stimulus interval, rate and direction differentially regulatephosphorylation for mechanotransduction in neonatal cardiac myocytes. FEBS Lett 581(22):4241-4247, 2007.
80.Shyu KG, Ko WH, Yang WS, Wang BW, Kuan P. Insulin-like growth factor-1 mediates stretch-inducedupregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovascular Research 68(3):405-414, 2005.
81.Sil P, Gupta S, Young D, Sen S. Regulation of myotrophin gene by pressure overload and stretch. Mol CellBiochem 262(1-2):79-89, 2004.
82.Simmons CA, Nikolovski J, Thornton AJ, Matlis S, Mooney DJ. Mechanical stimulation and mitogen-activated protein kinase signaling independently regulate osteogenic differentiation and mineralization bycalcifying vascular cells. Journal of Biomechanics 37(10):1531-1541, 2004.
83.Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S,Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K. The FOXO3a transcription factor regulatescardiac myocyte size downstream of AKT signaling. J Biol Chem 280(21):20814-20823, 2005.
84.Sun X, Nunes SS. Bioengineering approaches to mature human pluripotent stem cell-derived cardiomyocytes.Front Cell Dev Biol 5:19, 2017.
85.Swildens J, de Vries AA, Li Z, Umar S, Atsma DE, Schalij MJ, van der Laarse A. Integrin stimulationfavors uptake of macromolecules by cardiomyocytes in vitro. Cell Physiol Biochem 26(6):999-1010, 2010.
86.Tobita K, Garrison JB, Keller BB. Differential effects of cyclic stretch on embryonic ventricularcardiomyocyte and non-cardiomyocyte orientation. In: Cardiovascular Development and CongenitalMalformations: Molecular & Genetic Mechanisms, Edited by Artman M, Benson DW, Srivastava D,Nakazawa M. Blackwell Futura Publishing:177-179, 2005.
87.Tomanek RJ, Zheng W. Role of growth factors in coronary morphogenesis. Tex Heart Inst J 29(4):250-254,2002.
88.Tornatore TF, Dalla Costa AP, Clemente CF, Judice C, Rocco SA, Calegari VC, Cardoso L, CardosoAC, Gonçalves A Jr, Franchini KG. A role for focal adhesion kinase in cardiac mitochondrial biogenesisinduced by mechanical stress. Am J Physiol Heart Circ Physiol 300(3):H902-H912, 2011.
11
89. Torsoni AS, Constancio SS, Nadruz W, Hanks SK, Franchini KG. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93(2):140-147, 2003.
90. Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289(4):H1488-H1496, 2005.
91. Tsai CT, Chiang FT, Tseng CD, Yu CC, Wang YC, Lai LP, Hwang JJ, Lin JL. Mechanical stretch of atrial myocyte monolayer decreases sarcoplasmic reticulum calcium adenosine triphosphatase expression and increases susceptibility to repolarization alternans. J Am Coll Cardiol 58(20):2106-2115, 2011.
92. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011.
93. Tyagi SC, Lewis K, Pikes D, Marcello A, Mujumdar VS, Smiley LM, Moore CK. Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. J Cell Physiol 176(2):374-382, 1998.
94. van Kesteren CA, Saris JJ, Dekkers DH, Lamers JM, Saxena PR, Schalekamp MA, Danser AH. Cultured neonatal rat cardiac myocytes and fibroblasts do not synthesize renin or angiotensinogen: evidence for stretch-induced cardiomyocyte hypertrophy independent of angiotensin II. Cardiovascular Research 43(1):148-156, 1999.
95. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor- as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124, 2001.
96. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153, 2002.
97. van Wamel JE, Ruwhof C, van der Valk-Kokshoorn EJ, Schrier PI, van der Laarse A. Rapid gene transcription induced by stretch in cardiac myocytes and fibroblasts and their paracrine influence on stationary myocytes and fibroblasts. Pflugers Arch 439(6):781-788, 2000.
98. Wang BW, Hung HF, Chang H, Kuan P, Shyu KG. Mechanical stretch enhances the expression of resistin gene in cultured cardiomyocytes via tumor necrosis factor-. Am J Physiol Heart Circ Physiol 293(4):H2305-H2312, 2007.
99. Wang B, Wu G, Cheng K, Shyue K. Mechanical stretch via transforming growth factor-β1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes. Journal of the Formosan Medical Association, 2013. (10.1016/j.jfma.2013.01.002).
100. Watson CJ, Phelan D, Collier P, Horgan S, Glezeva N, Cooke G, Xu M, Ledwidge M, McDonald K, Baugh JA. Extracellular matrix sub-types and mechanical stretch impact human cardiac fibroblast responses to transforming growth factor . Connect Tissue Res 55(3):248-56, 2014.
101. Watson CJ, Phelan D, Xu M, Collier P, Neary R, Smolenski A, Ledwidge M, McDonald K, Baugh J. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis. Fibrogenesis Tissue Repair 5(1):9, 2012.
102. Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM, Dell'Italia LJ. Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 7(6):e40110, 2012.
103. Wu CK, Su MY, Lee JK, Chiang FT, Hwang JJ, Lin JL, Chen JJ, Liu FT, Tsai CT. Galectin-3 level and the severity of cardiac diastolic dysfunction using cellular and animal models and clinical indices. Sci Rep 5:17007, 2015.
104. Wu CK, Wang YC, Lee JK, Chang SN, Su MY, Yeh HM, Su MJ, Chen JJ, Chiang FT, Hwang JJ, Lin JL, Tsai CT. Connective tissue growth factor and cardiac diastolic dysfunction: human data from the Taiwan diastolic heart failure registry and molecular basis by cellular and animal models. Eur J Heart Fail 16(2):163-72, 2014.
105. Xi YT, Bai XJ, Wu GR, Ma AQ. Centrifugal force stretcher a new of in vitro mechanical cell stimulator. Sheng Li Xue Bao 56(3):419-423, 2004.
106. Yokoyama T, Sekiguchi K, Tanaka T, Tomaru K, Arai M, Suzuki T, Nagai R. Angiotensin II and mechanical stretch induce production of tumor necrosis factor in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 276:H1968-H1976, 1999.
107. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-. Am J Physiol Heart Circ Physiol 280(2):H909-H917, 2001.
12
108. Zhou C, Ziegler C, Birder LA, Stewart AF, Levitan ES. Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 98(8):1040-1047, 2006.
CARDIOVASCULAR ENDOTHELIAL CELLS
109. Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol 287(3):L486-L496, 2004.
110. Altalhi W, Sun X, Sivak JM, Husain M, Nunes SS. Diabetes impairs arterio-venous specification in engineered vascular tissues in a perivascular cell recruitment-dependent manner. Biomaterials 119:23-32, 2017.
111. Awolesi MA, Sessa WC, Sumpio BE. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96(3):1449-1454, 1995.
112. Azuma N, Duzgun SA, Ikeda M, Kito H, Akasaka N, Sasajima T, Sumpio BE. Endothelial cell response to different mechanical forces. J Vasc Surg 32(4):789-794, 2000.
113. Baker PN, Stranko CP, Davidge ST, Davies PS, Roberts JM. Mechanical stress eliminates the effects of plasma from patients with preeclampsia on endothelial cells. Am J Obstet Gynecol 174(2):730-6, 1996.
114. Brophy CM, Mills I, Rosales O, Isales C, Sumpio BE. Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem Biophys Res Commun 190(2):576-581, 1993.
115. Cevallos M, Riha GM, Wang X, Yang H, Yan S, Li M, Chai H, Yao Q, Chen C. Cyclic strain induces expression of specific smooth muscle cell markers in human endothelial cells. Differentiation 74(9-10):552-561, 2006.
116. Chang H, Wang BW, Kuan P, Shyu KG. Cyclical mechanical stretch enhances angiopoietin-2 and Tie2 receptor expression in cultured human umbilical vein endothelial cells. Clin Sci (Lond) 104(4):421-428, 2003.
117. Cheng JJ, Chao YJ, Wang DL. Cyclic strain activates redox-sensitive proline-rich tyrosine kinase 2 (PYK2) in endothelial cells. J Biol Chem 277(50):48152-48157, 2002.
118. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 28(3):386-391, 1996.
119. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells. Hypertension 31(1):125-30, 1998.
120. Cheng JJ, Wung BS, Chao YJ, Wang DL. Sequential activation of protein kinase C (PKC)- and PKC- contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem 276(33):31368-31375, 2001.
121. Coen P, Cummins P, Birney Y, Devery R, Cahill P. Modulation of nitric oxide and 6-keto-prostaglandin F(1) production in bovine aortic endothelial cells by conjugated linoleic acid. Endothelium 11(3-4):211-20, 2004.
122. Cohen CR, Mills I, Du W, Kamal K, Sumpio BE. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain. Exp Cell Res 231(1):184-189, 1997.
123. Cummins PM, Cotter EJ, Cahill PA. Hemodynamic regulation of metallopeptidases within the vasculature. Protein Pept Lett 11(5):433-442, 2004.
124. Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 292:H28–H42, 2007.
125. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167(2):609-618, 2005.
126. Dong R, Zhang K, Wang YL, Zhang F, Cao J, Zheng JB, Zhang HJ. MiR-551b-5p contributes to pathogenesis of vein graft failure via upregulating early growth response-1 expression. Chin Med J (Engl) 130(13):1578-1585, 2017.
127. Du W, Mills I, Sumpio BE. Cyclic strain causes heterogeneous induction of transcription factors, AP-1, CRE binding protein and NF-B, in endothelial cells: species and vascular bed diversity. Journal of Biomechanics 28(12):1485-149, 1995.
128. Evans L, Frenkel L, Brophy CM, Rosales O, Sudhaker CB, Li G, Du W, Sumpio BE. Activation of diacylglycerol in cultured endothelial cells exposed to cyclic strain. Am J Physiol 272(2 Pt 1):C650-C656, 1997.
13
129. Fisslthaler B, Boengler K, Fleming I, Schaper W, Busse R, Deindl E. Identification of a cis-element regulating transcriptional activity in response to fluid shear stress in bovine aortic endothelial cells. Endothelium 10(4-5):267-75, 2003.
130. Fisslthaler B, Popp R, Michaelis UR, Kiss L, Fleming I, Busse R. Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase. Hypertension 38(6):1427-1432, 2001.
131. Freese C, Anspach L, Deller RC, Richards SJ, Gibson MI, Kirkpatrick CJ, Unger RE. Gold nanoparticle interactions with endothelial cells cultured under physiological conditions. Biomater Sci 5(4):707-717, 2017.
132. Fujioka K, Azuma N, Kito H, Gahtan V, Esato K, Sumpio BE. Role of caveolin in hemodynamic force-mediated endothelial changes. J Surg Res 92(1):7-10, 2000.
133. Gawlak G, Tian Y, O'Donnell JJ 3rd, Tian X, Birukova AA, Birukov KG. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex. FASEB J 28(7):3249-60, 2014.
134. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105(32):11305-11310, 2008.
135. Goettsch C, Goettsch W, Arsov A, Hofbauer LC, Bornstein SR, Morawietz H. Long-term cyclic strain downregulates endothelial Nox4. Antioxid Redox Signal 11(10):2385-2397, 2009.
136. Grigoryev DN, Ma SF, Irizarry RA, Ye SQ, Quackenbush J, Garcia JG. Orthologous gene-expression profiling in multi-species models: search for candidate genes. Genome Biol 5(5):R34, 2004.
137. Haga M, Chen A, Gortler D, Dardik A, Sumpio BE. Shear stress and cyclic strain may suppress apoptosis in endothelial cells by different pathways. Endothelium 10(3):149-57, 2003.
138. Hishikawa K, Luscher TF. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation 96(10):3610-3616, 1997.
139. Hoshino Y, Nishimura K, Sumpio BE. Phosphatase PTEN is inactivated in bovine aortic endothelial cells exposed to cyclic strain. J Cell Biochem 100(2):515-526, 2007.
140. Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR. Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol Cell Physiol 272(2):C421-C427, 1997.
141. Hu J, Liu Y. Cyclic strain enhances cellular uptake of nanoparticles. Journal of Nanomaterials 2015:953584, 2015.
142. Iba T, Mills I, Sumpio BE. Intracellular cyclic AMP levels in endothelial cells subjected to cyclic strain in vitro. J Surg Res 52(6):625-630, 1992.
143. Iba T, Shin T, Sonoda T, Rosales O, Sumpio BE. Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch. J Surg Res 50(5):457-460, 1991.
144. Iba T, Sumpio BE. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc Res 42(3):245-254, 1991.
145. Ikeda M, Kito H, Sumpio BE. Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. Biochem Biophys Res Commun 257(3):668-671, 1999.
146. Ikeda M, Takei T, Mills I, Kito H, Sumpio BE. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain. Am J Physiol Heart Circ Physiol 276:H614-H622, 1999.
147. Ikeda M, Takei T, Mills I, Sumpio BE. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain. Biochem Biophys Res Commun 247(2):462-465, 1998.
148. Jiang J, Qi YX, Zhang P, Gu WT, Yan ZQ, Shen BR, Yao QP, Kong H, Chien S, Jiang ZL. Involvement of Rab28 in NF-B nuclear transport in endothelial cells. PLoS One 8(2):e56076, 2013.
149. Jiang Y, Wang Y, Tang G. Cyclic tensile strain promotes the osteogenic differentiation of a bone marrow stromal cell and vascular endothelial cell co-culture system. Arch Biochem Biophys 607:37-43, 2016.
150. Juan SH, Chen JJ, Chen CH, Lin H, Cheng CF, Liu JC, Hsieh MH, Chen YL, Chao HH, Chen TH, Chan P, Cheng TH. 17-estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells. Am J Physiol Heart Circ Physiol 287(3):H1254-H1261, 2004.
151. Kim JI, Cordova AC, Hirayama Y, Madri JA, Sumpio BE. Differential effects of shear stress and cyclic strain on Sp1 phosphorylation by protein kinase C modulates membrane type 1-matrix metalloproteinase in endothelial cells. Endothelium 15(1):33-42, 2008.
152. Kito H, Yokoyama C, Inoue H, Tanabe T, Nakajima N, Sumpio BE. Cyclooxygenase expression in bovine aortic endothelial cells exposed to cyclic strain. Endothelium 6(2):107-112, 1998.
14
153. Kobayashi K, Tanaka M, Nebuya S, Kokubo K, Fukuoka Y, Harada Y, Kobayashi H, Noshiro M, Inaoka H. Temporal change in IL-6 mRNA and protein expression produced by cyclic stretching of human pulmonary artery endothelial cells. Int J Mol Med 30(3):509-13, 2012.
154. Korff T, Aufgebauer K, Hecker M. Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-1 response. Circulation 116(20):2288-2297, 2007.
155. Korff T, Ernst E, Nobiling R, Feldner A, Reiss Y, Plate KH, Fiedler U, Augustin HG, Hecker M. Angiopoietin-1 mediates inhibition of hypertension-induced release of angiopoietin-2 from endothelial cells. Cardiovasc Res 94(3):510-8, 2012.
156. Kou B, Zhang J, Singer DR. Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NAD(P)H subunit p22phox. Microvasc Res 77(2):125-133, 2009.
157. Kuk H, Arnold C, Meyer R, Hecker M, Korff T. Magnolol inhibits venous remodeling in mice. Sci Rep 7(1):17820, 2017. doi: 10.1038/s41598-017-17910-0.
158. Lauth M, Cattaruzza M, Hecker M. ACE inhibitor and AT1 antagonist blockade of deformation-induced gene expression in the rabbit jugular vein through B2 receptor activation. Arterioscler Thromb Vasc Biol 21(1):61-6, 2001.
159. Lauth M, Wagner AH, Cattaruzza M, Orzechowski HD, Paul M, Hecker M. Transcriptional control of deformation-induced preproendothelin-1 gene expression in endothelial cells. J Mol Med 78(8):441-450, 2000.
160. Lee T, Kim SJ, Sumpio BE. Role of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. J Cell Physiol 194(3):349-355, 2003.
161. Li W, Sumpio BE. Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway. Am J Physiol Heart Circ Physiol 288(4):H1591-1597, 2005.
162. Loperena R, Chen W, Kirabo A, Harrison DG. Hypertensive mechanical stretch: A model for monocyte-derived dendritic cell differentiation [abstract]. The FASEB Journal 30(1):723.4, 2016.
163. Mai J, Hu Q, Xie Y, Su S, Qiu Q, Yuan W, Yang Y, Song E, Chen Y, Wang J. Dyssynchronous pacing triggers endothelial-mesenchymal transition through heterogeneity of mechanical stretch in a canine model. Circ J 79(1):201-9, 2015.
164. Martin FA, McLoughlin A, Rochfort KD, Davenport C, Murphy RP, Cummins PM. Regulation of thrombomodulin expression and release in human aortic endothelial cells by cyclic strain. PLoS One 9(9):e108254, 2014.
165. Mascarenhas JB, Tchourbanov AY, Fan H, Danilov SM, Wang T, Garcia JG. Mechanical stress and single nucleotide variants regulate alternative splicing of the MYLK gene. Am J Respir Cell Mol Biol 56(1):29-37, 2017. doi: 10.1165/rcmb.2016-0053OC.
166. McIntosh CT, Warnock JN. Side-specific characterization of aortic valve endothelial cell adhesion molecules under cyclic strain. The Journal of Heart Valve Disease 22:631-639, 2013.
167. Metzler SA, Pregonero CA, Butcher JT, Burgess SC, Warnock JN. Cyclic strain regulates pro-inflammatory protein expression in porcine aortic valve endothelial cells. J Heart Valve Dis 17(5):571-577, 2008.
168. Moldobaeva A, Jenkins J, Wagner E. Effects of distension on airway inflammation and venular P-selectin expression. Am J Physiol Lung Cell Mol Physiol 295(5):L941-L948, 2008.
169. Morrow D, Cullen JP, Cahill PA, Redmond EM. Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells: role in angiogenic activity. Arterioscler Thromb Vasc Biol 27:1289-1296, 2007.
170. Murata K, Mills I, Sumpio BE. Protein phosphatase 2A in stretch-induced endothelial cell proliferation. J Cell Biochem 63(3):311-319, 1996.
171. Neto F, Klaus-Bergmann A, Ong YT, Alt S, Vion AC, Szymborska A, Carvalho JR, Hollfinger I, Bartels-Klein E, Franco CA, Potente M, Gerhardt H. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. Elife 2018 Feb 5;7. pii: e31037. doi: 10.7554/eLife.31037. [Epub ahead of print]
172. Nishimura K, Li W, Hoshino Y, Kadohama T, Asada H, Ohgi S, Sumpio BE. Role of AKT in cyclic strain-induced endothelial cell proliferation and survival. Am J Physiol Cell Physiol 290(3):C812-C821, 2006.
173. Okada M, Matsumori A, Ono K, Furukawa Y, Shioi T, Iwasaki A, Matsushima K, Sasayama S. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol 18(6):894-901, 1998.
174. Pikkarainen S, Tokola H, Kerkela R, Ilves M, Makinen M, Orzechowski HD, Paul M, Vuolteenaho O, Ruskoaho H. Inverse regulation of preproendothelin-1 and endothelin-converting enzyme-1 genes in cardiac cells by mechanical load. Am J Physiol Regul Integr Comp Physiol 290(6):R1639-R1645, 2006.
15
175. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, Nakata Y, Takami S, Higaki J, Ogihara T. Links between hypertension and myocardial infarction. American Heart Journal 132(1 Pt 2 Su):213-221, 1996.
176. Regnault V, Perret-Guillaume C, Kearney-Schwartz A, Max JP, Labat C, Louis H, Wahl D, Pannier B, Lecompte T, Weryha G, Challande P, Safar ME, Benetos A, Lacolley P. Tissue factor pathway inhibitor: a new link among arterial stiffness, pulse pressure, and coagulation in postmenopausal women. Arterioscler Thromb Vasc Biol 31(5):1226-1232, 2011.
177. Rosales OR, Isales CM, Barrett PQ, Brophy C, Sumpio BE. Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem J 326(Pt 2):385-92, 1997.
178. Rosales OR, Sumpio BE. Changes in cyclic strain increase inositol trisphosphate and diacylglycerol in endothelial cells. Am J Physiol Cell Physiol 262(4):C956-C962, 1992.
179. Schneider SW, Yano Y, Sumpio BE, Jena BP, Geibel JP, Gekle M, Oberleithner H. Rapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope. Cell Biol Int 21(11):759-768, 1997.
180. Segurola RJ Jr, Oluwole B, Mills I, Yokoyama C, Tanabe T, Kito H, Nakajima N, Sumpio BE. Cyclic strain is a weak inducer of prostacyclin synthase expression in bovine aortic endothelial cells. J Surg Res 69(1):135-138, 1997.
181. Sheikh AQ, Kuesel C, Taghian T, Hurley JR, Huang W, Wang Y, Hinton RB, Narmoneva DA. Angiogenic microenvironment augments impaired endothelial responses under diabetic conditions. Am J Physiol Cell Physiol 306(8):C768-78, 2014.
182. Steadman E, Meza D, Rubenstein DA, Yin W. Endothelial cell mechanical responses are dependent on both fluid shear stress and tensile strain. The FASEB Journal 31(1 Supplement), 689-16, 2017.
183. Sumpio BE, Banes AJ, Buckley M, Johnson G Jr. Alterations in aortic endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. J Vasc Surg 7(1):130-138, 1988.
184. Sumpio BE, Banes AJ, Levin LG, Johnson G Jr. Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg 6(3):252-256, 1987.
185. Sumpio BE, Banes AJ, Link GW, Iba T. Modulation of endothelial cell phenotype by cyclic stretch: inhibition of collagen production. J Surg Res 48(5):415-420, 1990.
186. Sumpio BE, Banes AJ. Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic mechanical deformation. Surgery 104(2):383-389, 1988.
187. Sumpio BE, Chang R, Xu WJ, Wang XJ, Du W. Regulation of tPA in endothelial cells exposed to cyclic strain: role of CRE, AP-2, and SSRE binding sites. Am J Physiol Cell Physiol 273:C1441-C1448, 1997.
188. Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T, Gimbrone MA Jr, Resnick N. Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler Thromb Vasc Biol 18(3):349-355, 1998.
189. Sun X, Elangovan VR, Mapes B, Camp SM, Sammani S, Saadat L, Ceco E, Ma SF, Flores C, MacDougall MS, Quijada H, Liu B, Kempf CL, Wang T, Chiang ET, Garcia JG. The NAMPT promoter is regulated by mechanical stress, signal transducer and activator of transcription 5, and acute respiratory distress syndrome-associated genetic variants. Am J Respir Cell Mol Biol 51(5):660-7, 2014.
190. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123-1130, 2009.
191. Tomanek RJ, Zheng W. Role of growth factors in coronary morphogenesis. Tex Heart Inst J 29(4):250-254, 2002.
192. Ulfhammer E, Ridderstrale W, Andersson M, Karlsson L, Hrafnkelsdottir T, Jern S. Prolonged cyclic strain impairs the fibrinolytic system in cultured vascular endothelial cells. J Hypertens 23(8):1551-1557, 2005.
193. Upchurch GR Jr, Loscalzo J, Banes AJ. Changes in the amplitude of cyclic load biphasically modulate endothelial cell DNA synthesis and division. Vasc Med 2(1):19-24, 1997.
194. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor- as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124, 2001.
195. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153, 2002.
16
196. Vion AC, Birukova AA, Boulanger CM, Birukov KG. Mechanical forces stimulate endothelial microparticle generation via caspase-dependent apoptosis-independent mechanism. Pulm Circ 3(1):95-9, 2013.
197. Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. Gallolyticus isolates and human endothelial cells. BMC Microbiology 10:78, 2010.
198. von Offenberg Sweeney N, Cummins PM, Birney YA, Cullen JP, Redmond EM, Cahill PA. Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovascular Research 63(4):625-634, 2004.
199. von Offenberg Sweeney N, Cummins PM, Birney YA, Redmond EM, Cahill PA. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications 320:325–333, 2004.
200. von Offenberg Sweeney, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochemical and Biophysical Research Communications 329:573–582, 2005.
201. Wang C, Jiao C, Hanlon HD, Zheng W, Tomanek RJ, Schatteman GC. Mechanical, cellular, and molecular factors interact to modulate circulating endothelial cell progenitors. Am J Physiol Heart Circ Physiol 286(5):H1985-H1993, 2004.
202. Wang DL, Wung BS, Peng YC, Wang JJ. Mechanical strain increases endothelin-1 gene expression via protein kinase C pathway in human endothelial cells. J Cell Physiol 163(2):400-406, 1995.
203. Wang DL, Wung BS, Shyy YJ, Lin CF, Chao YJ, Usami S, Chien S. Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells. Effects of mechanical strain on monocyte adhesion to endothelial cells. Circ Res 77(2):294-302, 1995.
204. Wang L, Bao H, Wang KX, Zhang P, Yao QP, Chen XH, Huang K, Qi YX, Jiang ZL. Secreted miR-27a induced by cyclic stretch modulates the proliferation of endothelial cells in hypertension via GRK6. Sci Rep 7:41058, 2017.
205. Widmann MD, Letsou GV, Phan S, Baldwin JC, Sumpio BE. Isolation and characterization of rabbit cardiac endothelial cells: response to cyclic strain and growth factors in vitro. Journal of Surgical Research 53(4):331-334, 1992.
206. Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 78(3):358-63, 2009.
207. Woodell JE, LaBerge M, Langan EM 3rd, Hilderman RH. In vitro strain-induced endothelial cell dysfunction determined by DNA synthesis. Proc Inst Mech Eng [H] 217(1):13-20, 2003.
208. Woodell JE, LaBerge M, Langan EM 3rd, Hilderman RH. P1,P4-diadenosine 5'-tetraphosphate induced DNA synthesis in mechanically injured cultured endothelial cells. Proc Inst Mech Eng [H] 217(1):21-26, 2003.
209. Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL. Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res 84(7):804-812, 1999.
210. Wung BS, Cheng JJ, Chao YJ, Lin J, Shyy YJ, Wang DL. Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am J Physiol Heart Circ Physiol 270(4):H1462-H1468, 1996.
211. Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 81(1):1-7, 1997.
212. Wung BS, Cheng JJ, Shyue SK, Wang DL. NO modulates monocyte chemotactic protein-1 expression in endothelial cells under cyclic strain. Arterioscler Thromb Vasc Biol 21(12):1941-1947, 2001.
213. Yamaguchi S, Yamaguchi M, Yatsuyanagi E, Yun SS, Nakajima N, Madri JA, Sumpio BE. Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab Invest 82(7):949-956, 2002.
214. Yano Y, Geibel J, Sumpio BE. Cyclic strain induces reorganization of integrin 51 and 21 in human umbilical vein endothelial cells. J Cell Biochem 64(3):505-513, 1997.
215. Yano Y, Geibel J, Sumpio BE. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol Cell Physiol 271:C635-C649, 1996.
216. Yano Y, Saito Y, Narumiya S, Sumpio BE. Involvement of rho p21 in cyclic strain-induced tyrosine phosphorylation of focal adhesion kinase (pp125FAK), morphological changes and migration of endothelial cells. Biochem Biophys Res Commun 224(2):508-515, 1996.
17
217. Zheng W, Christensen LP, Tomanek RJ. Stretch induces upregulation of key tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 287(6):H2739-H2745, 2004.
218. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-. Am J Physiol Heart Circ Physiol 280(2):H909-H917, 2001.
219. Zheng W, Christensen LP, Tomanek RJ. Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295:H794–H800, 2008.
CARDIOVASCULAR SMOOTH MUSCLE CELLS
220. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.
221. Arnold C, Demirel E, Feldner A, Genové G, Zhang H, Sticht C, Wieland T, Hecker M, Heximer S, Korff T. Hypertension-evoked RhoA activity in vascular smooth muscle cells requires RGS5. FASEB J 2018 Jan 5:fj201700384RR. doi: 10.1096/fj.201700384RR. [Epub ahead of print]
222. Arnold C, Feldner A, Pfisterer L, Hödebeck M, Troidl K, Genové G, Wieland T, Hecker M, Korff T. RGS5 promotes arterial growth during arteriogenesis. EMBO Mol Med 6(8):1075-89, 2014.
223. Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, Patterson C, Schisler JC, Viera AJ, Taylor JM, Mack CP. Blood pressure-associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. J Clin Invest 127(2):670-680, 2017.
224. Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, Smirnov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem 144(2):131-139, 1995.
225. Capers Q 4th, Alexander RW, Lou P, De Leon H, Wilcox JN, Ishizaka N, Howard AB, Taylor WR. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 30(6):1397-1402, 1997.
226. Cattaruzza M, Berger MM, Ochs M, Fayyazi A, Fuzesi L, Richter J, Hecker M. Deformation-induced endothelin B receptor-mediated smooth muscle cell apoptosis is matrix-dependent. Cell Death Differ 9(2):219-226, 2002.
227. Cattaruzza M, Dimigen C, Ehrenreich H, Hecker M. Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J 14(7):991-998, 2000.
228. Chang H, Shyu KG, Wang BW, Kuan P. Regulation of hypoxia-inducible factor-1 by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci (Lond) 105(4):447-456, 2003.
229. Chapman GB, Durante W, Hellums JD, Schafer AI. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 278:H748-H754, 2000.
230. Chen AH, Gortler DS, Kilaru S, Araim O, Frangos SG, Sumpio BE. Cyclic strain activates the pro-survival Akt protein kinase in bovine aortic smooth muscle cells. Surgery 130(2):378-381, 2001.
231. Chen Q, Li W, Quan Z, Sumpio BE. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. J Vasc Surg 37(3):660-668, 2003.
232. Cheng J, Du J. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Biol 27(8):1744-1751, 2007.
233. Cheng J, Zhang J, Merched A, Zhang L, Zhang P, Truong L, Boriek AM, Du J. Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin V3 and stablization of PINCH-1. J Biol Chem 282(47):34268-34275, 2007.
234. Cheng WP, Hung HF, Wang BW, Shyu KG. The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovascular Research 77:551–559, 2008.
235. Cheng WP, Wang BW, Chen SC, Chang H, Shyu KG. Mechanical stretch induces the apoptosis regulator PUMA in vascular smooth muscle cells. Cardiovasc Res 93(1):181-9, 2012.
236. Chiu CZ, Wang BW, Shyu KG. Effects of cyclic stretch on the molecular regulation of myocardin in rat aortic vascular smooth muscle cells. J Biomed Sci 20:50, 2013.
237. Clements ML, Banes AJ, Faber JE. Effect of mechanical loading on vascular 1D- and 1B-adrenergic receptor expression. Hypertension 29(5):1156-1164, 1997.
238. Clements ML, Faber JE. Mechanical load opposes angiotensin-mediated decrease in vascular 1-adrenoceptors. Hypertension 29(5):1165-1172, 1997.
18
239. Colombo A, Guha S, Mackle JN, Cahill PA, Lally C. Cyclic strain amplitude dictates the growth response of vascular smooth muscle cells in vitro: role in in-stent restenosis and inhibition with a sirolimus drug-eluting stent. Biomech Model Mechanobiol 12(4):671-83, 2013.
240. Cunningham JJ, Linderman JJ, Mooney DJ. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann Biomed Eng 30(7):927-935, 2002.
241. Dangers M, Kiyan J, Grote K, Schieffer B, Haller H, Dumler I. Mechanical stress modulates SOCS-1 expression in human vascular smooth muscle cells. J Vasc Res 47(5):432-440, 2010.
242. Davis MG, Ali S, Leikauf GD, Dorn GW 2nd. Tyrosine kinase inhibition prevents deformation-stimulated vascular smooth muscle growth. Hypertension 24(6):706-713, 1994.
243. Dethlefsen SM, Shepro D, D'Amore PA. Comparison of the effects of mechanical stimulation on venous and arterial smooth muscle cells in vitro. J Vasc Res 33(5):405-413, 1996.
244. de Waard V, Arkenbout EK, Vos M, Mocking AI, Niessen HW, Stooker W, de Mol BA, Quax PH, Bakker EN, VanBavel E, Pannekoek H, de Vries CJ. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells. Am J Pathol 168:2027–2035, 2006.
245. Dinardo CL, Venturini G, Zhou EH, Watanabe IS, Campos LC, Dariolli R, da Motta-Leal-Filho JM, Carvalho VM, Cardozo KH, Krieger JE, Alencar AM, Pereira AC. Variation of mechanical properties and quantitative proteomics of VSMC along the arterial tree. Am J Physiol Heart Circ Physiol 306(4):H505-16, 2014.
246. Eschrich J, Meyer R, Kuk H, Wagner AH, Noppeney T, Debus S, Hecker M, Korff T. Varicose remodeling of veins is suppressed by 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. J Am Heart Assoc 5(2), pii: e002405, 2016.
247. Faber JE, Yang N, Xin X. Expression of -adrenoceptor subtypes by smooth muscle cells and adventitial fibroblasts in rat aorta and in cell culture. J Pharmacol Exp Ther 298(2):441-452, 2001.
248. Ghosh S, Kollar B, Nahar T, Suresh Babu S, Wojtowicz A, Sticht C, Gretz N, Wagner AH, Korff T, Hecker M. Loss of the mechanotransducer zyxin promotes a synthetic phenotype of vascular smooth muscle cells. J Am Heart Assoc 4(6):e001712, 2015.
249. Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P, Sinha S. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet 49(1):97-109, 2017. doi: 10.1038/ng.3723. Epub 2016 Nov 28.
250. Grote K, Bavendiek U, Grothusen C, Flach I, Hilfiker-Kleiner D, Drexler H, Schieffer B. Stretch-inducible expression of the angiogenic factor CCN1 in vascular smooth muscle cells is mediated by Egr-1. J Biol Chem 279(53):55675-55681, 2004.
251. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92(11):e80-86, 2003.
252. Hamada K, Takuwa N, Yokoyama K, Takuwa Y. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem 273(11):6334-6340, 1998.
253. Han O, Takei T, Basson M, Sumpio BE. Translocation of PKC isoforms in bovine aortic smooth muscle cells exposed to strain. J Cell Biochem 80(3):367-372, 2001.
254. Hipper A, Isenberg G. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch 440(1):19-27, 2000.
255. Hishikawa K, Oemar BS, Yang Z, Luscher TF. Pulsatile stretch stimulates superoxide production and activates nuclear factor-B in human coronary smooth muscle. Circ Res 81(5):797-803, 1997.
256. Hitomi H, Fukui T, Moriwaki K, Matsubara K, Sun GP, Rahman M, Nishiyama A, Kiyomoto H, Kimura S, Ohmori K, Abe Y, Kohno M. Synergistic effect of mechanical stretch and angiotensin II on superoxide production via NADPH oxidase in vascular smooth muscle cells. J Hypertens 24(6):1097-1104, 2006.
257. Hödebeck M, Scherer C, Wagner AH, Hecker M, Korff T. TonEBP/NFAT5 regulates ACTBL2 expression in biomechanically activated vascular smooth muscle cells. Front Physiol 5:467, 2014.
258. Hoffmann SE, Kuriakose M, Songu-Mize E. Stretch-induced downregulation of TRPC4 does not decrease capacitative calcium entry in vascular smooth muscle cells [abstract]. Hypertension 46:P80, 2005.
259. Hoffmann SE, Kuriakose M, Songu-Mize E. Stretch-induced TRPC4 downregulation in RASM cells may be due to changes in intracellular calcium [abstract]. FASEB J 20:699.17, 2006.
260. Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR. Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol Cell Physiol 272(2):C421-C427, 1997.
19
261. Hu B, Song JT, Qu HY, Bi CL, Huang XZ, Liu XX, Zhang M. Mechanical stretch suppresses microRNA-145 expression by activating extracellular signal-regulated kinase 1/2 and upregulating angiotensin-converting enzyme to alter vascular smooth muscle cell phenotype. PLoS One 9(5):e96338, 2014.
262. Hu Y, Bock G, Wick G, Xu Q. Activation of PDGF receptor in vascular smooth muscle cells by mechanical stress. FASEB J 12(12):1135-1142, 1998.
263. Huang K, Bao H, Yan ZQ, Wang L, Zhang P, Yao QP, Shi Q, Chen XH, Wang KX, Shen BR, Qi YX, Jiang ZL. MicroRNA-33 protects against neointimal hyperplasia induced by arterial mechanical stretch in the grafted vein. Cardiovasc Res 113(5):488-497, 2017.
264. Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278(2):H521-H529, 2000.
265. Iwasaki H, Yoshimoto T, Sugiyama T, Hirata Y. Activation of cell adhesion kinase by mechanical stretch in vascular smooth muscle cells. Endocrinology 144(6):2304-2310, 2003.
266. Jia LX, Zhang WM, Li TT, Liu Y, Piao CM, Ma YC, Lu Y, Wang Y, Liu TT, Qi YF, Du J. ER stress dependent microparticles derived from smooth muscle cells promote endothelial dysfunction during thoracic aortic aneurysm and dissection. Clin Sci (Lond) 131(12):1287-1299, 2017.
267. Jia LX, Zhang WM, Zhang HJ, Li TT, Wang YL, Qin YW, Gu H, Du J. Mechanical stretch-induced endoplasmic reticulum stress, apoptosis and inflammation contribute to thoracic aortic aneurysm and dissection. J Pathol 236(3):373-83, 2015.
268. Jiang J, Qi YX, Zhang P, Gu WT, Yan ZQ, Shen BR, Yao QP, Kong H, Chien S, Jiang ZL. Involvement of Rab28 in NF-B nuclear transport in endothelial cells. PLoS One 8(2):e56076, 2013.
269. Jiang MJ, Yu YJ, Chen YL, Lee YM, Hung LS. Cyclic strain stimulates monocyte chemotactic protein-1 mRNA expression in smooth muscle cells. J Cell Biochem 76(2):303-310, 2000.
270. Jiang WJ, Ren WH, Liu XJ, Liu Y, Wu FJ, Sun LZ, Lan F, Du J, Zhang HJ. Disruption of mechanical stress in extracellular matrix is related to Stanford type A aortic dissection through down-regulation of Yes-associated protein. Aging (Albany NY) 8(9):1923-1939, 2016.
271. Kakisis JD, Pradhan S, Cordova A, Liapis CD, Sumpio BE. The role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain. Int J Biochem Cell Biol 37(7):1396-1406, 2005.
272. Kawabe J, Okumura S, Lee MC, Sadoshima J, Ishikawa Y. Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286(5):H1845-1852, 2004.
273. Kim BS, Nikolovski J, Bonadio J, Mooney DJ. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotech 17(10):979-983, 1999.
274. Kogata N, Tribe RM, Fässler R, Way M, Adams RH. Integrin-linked kinase controls vascular wall formation by negatively regulating Rho/ROCK-mediated vascular smooth muscle cell contraction. Genes Dev 23(19):2278-2283, 2009.
275. Kona S, Chellamuthu P, Xu H, Hills SR, Nguyen KT. Effects of cyclic strain and growth factors on vascular smooth muscle cell responses. Open Biomed Eng J 3:28-38, 2009.
276. Kozai T, Eto M, Yang Z, Shimokawa H, Luscher TF. Statins prevent pulsatile stretch-induced proliferation of human saphenous vein smooth muscle cells via inhibition of Rho/Rho-kinase pathway. Cardiovasc Res 68(3):475-482, 2005.
277. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1):21-34, 2006.
278. Lee EL, Bendre HH, Kalmykov A, Wong JY. Surface modification of uniaxial cyclic strain cell culture platform with temperature-responsive polymer for cell sheet detachment. J Mater Chem B Mater Biol Med 3(40):7899-7902, 2015.
279. Li C, Hu Y, Mayr M, Xu Q. Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 274(36):25273-25280, 1999.
280. Li C, Hu Y, Sturm G, Wick G, Xu Q. Ras/Rac-Dependent activation of p38 mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain stress. Arterioscler Thromb Vasc Biol 20(3):E1-E9, 2000.
281. Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A. Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-. J Vasc Res 35(2):93-103, 1998.
20
282. Li W, Chen Q, Mills I, Sumpio BE. Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells. J Cell Physiol 195(2):202-209, 2003.
283. Licht AH, Nübel T, Feldner A, Jurisch-Yaksi N, Marcello M, Demicheva E, Hu JH, Hartenstein B, Augustin HG, Hecker M, Angel P, Korff T, Schorpp-Kistner M. Junb regulates arterial contraction capacity, cellular contractility, and motility via its target Myl9 in mice. J Clin Invest 120(7):2307-2318, 2010.
284. Lindsey-Hoffmann SE, Songu-Mize E. Cyclic stretch decreases capacitative calcium entry in vascular smooth muscle cells from resistance and conduit vessels [abstract]. Experimental Biology, 2007.
285. Ling S, Deng G, Ives HE, Chatterjee K, Rubanyi GM, Komesaroff PA, Sudhir K. Estrogen inhibits mechanical strain-induced mitogenesis in human vascular smooth muscle cells via down-regulation of Sp-1. Cardiovascular Research 50(1):108-114, 2001.
286. Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, Jiang ZL. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J 94:1497-1507, 2008.
287. Liu G, Hitomi H, Hosomi N, Lei B, Pelisch N, Nakano D, Kiyomoto H, Ma H, Nishiyama A. Mechanical stretch potentiates angiotensin II-induced proliferation in spontaneously hypertensive rat vascular smooth muscle cells. Hypertens Res 33(12):1250-1257, 2010.
288. Liu X, Hymel LJ, Songu-Mize E. Involvement of intracellular Ca2+ and Na+ in stretch-regulated Na+, K+-ATPase isoform expression in cultured vascular smooth muscle cells [abstract]. FASEB J 11:A263, 1526, 1997.
289. Liu X, Hymel LJ, Songu-Mize E. Mechanosensitivity of Na+, K+-ATPase subunit expression in aortic smooth muscle cells [abstract]. Biophys J 70:A348, Tu-Pos 497, 1996.
290. Liu X, Hymel LJ, Songu-Mize E. Role of Na+ and Ca2+ in stretch-induced Na+-K+-ATPase -subunit regulation in aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 274:H83–H89, 1998.
291. Liu X, Hymel LJ, Songu-Mize E. Sodium entry through stretch-activated channels mediates upregulation of Na+, K+-ATPase isoforms in aortic smooth muscle cells [abstract]. Hypertension 30(Part 1):512, P175, 1997.
292. Lundberg MS, Sadhu DN, Grumman VE, Chilian WM, Ramos KS. Actin isoform and 1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch. In Vitro Cell Dev Biol Anim 31(8):595-600, 1995.
293. Mantella LE, Quan A, Verma S. Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc Cell 7:7, 2015
294. Mayr M, Li C, Zou Y, Huemer U, Hu Y, Xu Q. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases. FASEB J 14(2):261-270, 2000.
295. Metzler B, Abia R, Ahmad M, Wernig F, Pachinger O, Hu Y, Xu Q. Activation of heat shock transcription factor 1 in atherosclerosis. Am J Pathol 162(5):1669-1676, 2003.
296. Mills I, Cohen CR, Kamal K, Li G, Shin T, Du W, Sumpio BE. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J Cell Physiol 170(3):228-34, 1997.
297. Mills I, Murata K, Packer CS, Sumpio BE. Cyclic strain stimulates dephosphorylation of the 20kDa regulatory myosin light chain in vascular smooth muscle cells. Biochem Biophys Res Commun 205(1):79-84, 1994. Erratum in: Biochem Biophys Res Commun 207(3):1058, 1995.
298. Mohanty MJ, Li X. Stretch-induced Ca2+ release via an IP3-insensitive Ca2+ channel. Am J Physiol Cell Physiol 283(2):C456-C462, 2002.
299. Molostvov G, Hiemstra TF, Fletcher S, Bland R, Zehnder D. Arterial expression of the calcium-sensing receptor is maintained by physiological pulsation and protects against calcification. PLoS One 10(10):e0138833, 2015.
300. Morawietz H, Ma YH, Vives F, Wilson E, Sukhatme VP, Holtz J, Ives HE. Rapid induction and translocation of Egr-1 in response to mechanical strain in vascular smooth muscle cells. Circ Res 84(6):678-687, 1999.
301. Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA. Notch-mediated CBF-1/RBP-J-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289(5):C1188-C1196, 2005.
302. Morrow D, Sweeney C, Birney YA, Cummins PM, Walls D, Redmond EM, Cahill PA. Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res 96(5):567-575, 2005.
21
303. Morrow D, Sweeney C, Birney YA, Guha S, Collins N, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA. Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol 292(1):C488-C496, 2007.
304. Noda M, Katoh T, Takuwa N, Kumada M, Kurokawa K, Takuwa Y. Synergistic stimulation of parathyroid hormone-related peptide gene expression by mechanical stretch and angiotensin II in rat aortic smooth muscle cells. J Biol Chem 269(27):17911-17917, 1994.
305. Noda M, Takuwa Y, Katoh T, Kurokawa K. Stretch-induced parathyroid hormone-related peptide gene expression: implication in the regulation of myogenic tone. Curr Opin Nephrol Hypertens 4(5):383-387, 1995.
306. Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res 85(1):5-11, 1999.
307. O'Callaghan CJ, Williams B. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-1. Hypertension 36(3):319-324, 2000.
308. Pfisterer L, Feldner A, Hecker M, Korff T. Hypertension impairs myocardin function: a novel mechanism facilitating arterial remodelling. Cardiovasc Res 96(1):120-9, 2012.
309. Ping S, Li Y, Liu S, Zhang Z, Wang J, Zhou Y, Liu K, Huang J, Chen D, Wang J, Li C. Simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells accelerate diabetic mouse venous atherosclerosis. PLoS One 10(10):e0141375, 2015.
310. Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ. Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J Cell Sci 111(Pt 22):3379-3387, 1998.
311. Pyle AL, Atkinson JB, Pozzi A, Reese J, Eckes B, Davidson JM, Crimmins DL, Young PP. Regulation of the atheroma-enriched protein, SPRR3, in vascular smooth muscle cells through cyclic strain is dependent on integrin 11/collagen interaction. Am J Pathol 173(5):1577-1588, 2008.
312. Qi YX, Yao QP, Huang K, Shi Q, Zhang P, Wang GL, Han Y, Bao H, Wang L, Li HP, Shen BR, Wang Y, Chien S, Jiang ZL. Nuclear envelope proteins modulate proliferation of vascular smooth muscle cells during cyclic stretch application. Proc Natl Acad Sci U S A 113(19):5293-8, 2016.
313. Qu M, Liu B, Jiang Z. Effect of frequency of cyclic tensile strain on extracellular matrix of rat vascular smooth muscle cells in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 25(4):826-830, 2008.
314. Qu MJ, Liu B, Qi YX, Jiang ZL. Role of Rac and Rho-GDI in the frequency-dependent expression of h1-calponin in vascular smooth muscle cells under cyclic mechanical strain. Ann Biomed Eng 36(9):1481-1488, 2008.
315. Qu MJ, Liu B, Wang HQ, Yan ZQ, Shen BR, Jiang ZL. Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain. J Vasc Res 44(5):345-353, 2007.
316. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, Nakata Y, Takami S, Higaki J, Ogihara T. Links between hypertension and myocardial infarction. American Heart Journal 132(1 Pt 2 Su):213-221, 1996.
317. Regnault V, Perret-Guillaume C, Kearney-Schwartz A, Max JP, Labat C, Louis H, Wahl D, Pannier B, Lecompte T, Weryha G, Challande P, Safar ME, Benetos A, Lacolley P. Tissue factor pathway inhibitor: a new link among arterial stiffness, pulse pressure, and coagulation in postmenopausal women. Arterioscler Thromb Vasc Biol 31(5):1226-1232, 2011.
318. Reusch P, Wagdy H, Reusch R, Wilson E, Ives HE. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res 79(5):1046-1053, 1996.
319. Reyna SV, Ensenat D, Johnson FK, Wang H, Schafer AI, Durante W. Cyclic strain stimulates L-proline transport in vascular smooth muscle cells. American Journal of Hypertension 17(8):712-717, 2004.
320. Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN. Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J Biol Chem 282(32):23081-23088, 2007.
321. Ruiz-Velasco V, Mayer MB, Hymel LJ. Dihydropyridine-sensitive Ca2+ influx modulated by stretch in A7r5 vascular smooth muscle cells. European Journal of Pharmacology 296(3):327-334, 1996.
322. Schad JF, Meltzer KR, Hicks MR, Beutler DS, Cao TV, Standley PR. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Vasc Cell 3:21, 2011.
323. Scherer C, Pfisterer L, Wagner AH, Hödebeck M, Cattaruzza M, Hecker M, Korff T. Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells. J Am Heart Assoc 3(2):e000626, 2014.
324. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96(6):635-642, 2005.
22
325. Sedding DG, Homann M, Seay U, Tillmanns H, Preissner KT, Braun-Dullaeus RC. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J 22(2):579-589, 2008.
326. Sedding DG, Widmer-Teske R, Mueller A, Stieger P, Daniel JM, Gündüz D, Pullamsetti S, Nef H, Moellmann H, Troidl C, Hamm C, Braun-Dullaeus R. Role of the phosphatase PTEN in early vascular remodeling. PLoS One 8(3):e55445, 2013.
327. Seo KW, Lee SJ, Kim YH, Bae JU, Park SY, Bae SS, Kim CD. Mechanical stretch increases MMP-2 production in vascular smooth muscle cells via activation of PDGFR-β/Akt signaling pathway. PLoS One 8(8):e70437, 2013.
328. Sevieux N, Alam J, Songu-Mize E. Effect of cyclic stretch on -subunit mRNA expression of Na+-K+-ATPase in aortic smooth muscle cells. Am J Physiol Cell Physiol 280(6):C1555-C1560, 2001.
329. Sevieux N, Alam J, Songu-Mize E. Effect of cyclic stretch on transcriptional regulation of the subunits of Na+, K+-ATPase in aortic smooth muscle cells [abstract]. FASEB J 14:A331, 272.5, 2000.
330. Sevieux N, Alam J, Wiltse S, Songu-Mize E. Expression of the subunit mRNA of Na+, K+-ATPase in response to cyclic stretch in aortic smooth muscle cells [abstract]. FASEB J 13:351.4, 1999.
331. Sevieux N, Ark M, Hornick C, Songu-Mize E. Short-term stretch translocates the -1-subunit of the Na pump to plasma membrane. Cell Biochem Biophys 38(1):23-32, 2003.
332. Shah MR, Wedgwood S, Czech L, Kim GA, Lakshminrusimha S, Schumacker PT, Steinhorn RH, Farrow KN. Cyclic stretch induces inducible nitric oxide synthase and soluble guanylate cyclase in pulmonary artery smooth muscle cells. Int J Mol Sci 14(2):4334-48, 2013.
333. Shyu KG, Chao YM, Wang BW, Kuan P. Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension 46(3):614-621, 2005.
334. Shyu KG, Wang BW, Kuan P, Chang H. RNA interference for discoidin domain receptor 2 attenuates neointimal formation in balloon injured rat carotid artery. Arterioscler Thromb Vasc Biol 28(8):1447-1453, 2008.
335. Songu-Mize E, Jacobs M, Shreves A. Acute cyclic stretch induces upregulation of the Na-pump of aortic smooth muscle cells in culture by cytoplasmic translocation [abstract]. FASEB J 13:351.5, 1999.
336. Songu-Mize E, Jacobs M. Effect of cyclic in vitro stretch on aortic smooth muscle cell p42 and p44 mitogen acticated kinases [abstract]. FASEB J 12(Part I):A403, 2342, 1998.
337. Songu-Mize E, Liu X, Hymel LJ. Effect of mechanical strain on expression of Na+, K+-ATPase subunits in rat aortic smooth muscle cells. Amer J Med Sci 316(3):196-199, 1998.
338. Songu-Mize E, Liu X, Stones JE, Hymel LJ. Regulation of Na+, K+-ATPase -subunit expression by mechanical strain in aortic smooth muscle cells. Hypertension 27:827-832, 1996.
339. Songu-Mize E, Liu X. Effect of cyclic mechanical strain on expression of Na+, K+-ATPase subunits in rat aortic smooth muscle cells [abstract]. Cellular Deformation: Mechanics and Mechanisms of Physiological Response Meeting, Atlanta GA, October 1997.
340. Songu-Mize E, Sevieux N, Liu X, Jacobs M. Effect of short-term cyclic stretch on sodium pump activity in aortic smooth muscle cells. Amer J Physiol Heart Circ Physiol 281:H2072-H2078, 2001.
341. Standley PR, Camaratta A, Nolan BP, Purgason CT, Stanley MA. Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 283(5):H1907-H1914, 2002.
342. Standley PR, Obards TJ, Martina CL. Cyclic stretch regulates autocrine IGF-I in vascular smooth muscle cells: implications in vascular hyperplasia. Am J Physiol Endocrinol Metab 276:E697-E705, 1999.
343. Standley PR, Stanley MA, Senechal P. Activation of mitogenic and antimitogenic pathways in cyclically stretched arterial smooth muscle. Am J Physiol Endocrinol Metab 281(6):E1165-E1171, 2001.
344. Stanley AG, Knight AL, Williams B. Mechanical strain sensitizes human vascular smooth muscle cells to angiotensin II. American Journal of Hypertension 13(4 Suppl 1):S12, 2000.
345. Stanley AG, Patel H, Knight AL, Williams B. Mechanical strain-induced human vascular matrix synthesis: the role of angiotensin II. J Renin Angiotensin Aldosterone Syst 1(1):32-35, 2000.
346. Stones J, Liu X, Hymel L, Songu-Mize E. Upregulation of Na+, K+-ATPase -1 subunit in aortic smooth muscle cells stretched in culture [abstract]. Hypertension 26:578, P158, 1995.
347. Su BY, Shontz KM, Flavahan NA, Nowicki PT. The effect of phenotype on mechanical stretch-induced vascular smooth muscle cell apoptosis. J Vasc Res 43(3):229-237, 2006.
348. Sumpio BE, Banes AJ, Link WG, Johnson G Jr. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch Surg 123(10):1233-1236, 1988.
23
349. Sumpio BE, Banes AJ. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J Surg Res 44(6):696-701, 1988.
350. Tamura K, Chen YE, Lopez-Ilasaca M, Daviet L, Tamura N, Ishigami T, Akishita M, Takasaki I, Tokita Y, Pratt RE, Horiuchi M, Dzau VJ, and Umemura S. Molecular mechanism of fibronectin gene activation by cyclic stretch in vascular smooth muscle cells. J Biol Chem 275(44):34619-34627, 2000.
351. Tan W, Scott D, Belchenko D, Qi HJ, Xiao L. Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells. Biomed Microdevices 10(6):869-882, 2008.
352. Tock J, Van Putten V, Stenmark KR, Nemenoff RA. Induction of SM--actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem Biophys Res Commun 301(4):1116-1121, 2003.
353. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor- as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124, 2001.
354. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153, 2002.
355. von Offenberg Sweeney N, Cummins PM, Birney YA, Redmond EM, Cahill PA. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications 320:325–333, 2004.
356. Walker-Caprioglio HM, Hunter DD, McGuire PG, Little SA, McGuffee LJ. Composition in situ and in vitro of vascular smooth muscle laminin in the rat. Cell Tissue Res 281(1):187-196, 1995.
357. Wedgwood S, Lakshminrusimha S, Schumacker PT, Steinhorn RH. Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Front Pharmacol 6:47, 2015.
358. Wernig F, Mayr M, Xu Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by 1-integrin signaling pathways. Hypertension 41(4):903-911, 2003.
359. Wiersbitzky M, Mills I, Sumpio BE, Gewirtz H. Chronic cyclic strain reduces adenylate cyclase activity and stimulatory G protein subunit levels in coronary smooth muscle cells. Exp Cell Res 210(1):52-55, 1994.
360. Wilson E, Mai Q, Sudhir K, Weiss RH, Ives HE. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 123(3):741-747, 1993.
361. Wilson E, Vives F, Collins T, Ives HE. Strain-responsive regions in the platelet-derived growth factor-A gene promoter. Hypertension 31(1 Pt 2):170-175, 1998.
362. Yang Z, Noll G, Luscher TF. Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet- derived growth factor. Circulation 88:832-836, 1993.
363. Yao QP, Xie ZW, Wang KX, Zhang P, Han Y, Qi YX, Jiang ZL. Profiles of long noncoding RNAs in hypertensive rats: long noncoding RNA XR007793 regulates cyclic strain-induced proliferation and migration of vascular smooth muscle cells. J Hypertens 35(6):1195-1203, 2017.
364. Yao QP, Zhang P, Qi YX, Chen SG, Shen BR, Han Y, Yan ZQ, Jiang ZL. The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain. Int J Biochem Cell Biol 49:98-104, 2014.
365. Zampetaki A, Zhang Z, Hu Y, Xu Q. Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-B signaling pathways. Am J Physiol Heart Circ Physiol 288(6):H2946-H2954, 2005.
OTHER CARDIOVASCULAR CELLS
366. Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP, de Mol BA, Baaijens FP, Bouten CV. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets - relevance for tissue engineering. Tissue Eng 13(7):1501-1511, 2007.
367. Ballotta V, Driessen-Mol A, Bouten CV, Baaijens FP. Strain-dependent modulation of macrophage polarization within scaffolds. Biomaterials 35(18):4919-28, 2014.
368. Boerboom RA, Rubbens MP, Driessen NJ, Bouten CV, Baaijens FP. Effect of strain magnitude on the tissue properties of engineered cardiovascular constructs. Annals of Biomedical Engineering 36(2):244–253, 2008.
24
369. Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.
370. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.
371. Fisher CI, Chen J, Merryman WD. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol 12(1):5-17, 2013.
372. Foolen J, Baaijens F. Stress-fiber remodeling in 3D: ‘contact guidance vs stretch avoidance.’ J Biomech 45(Suppl 1):S422, 2012.
373. French KM, Maxwell JT, Bhutani S, Ghosh-Choudhary S, Fierro MJ, Johnson TD, Christman KL, Taylor WR, Davis ME. Fibronectin and cyclic strain improve cardiac progenitor cell regenerative potential in vitro. Stem Cells Int 2016:8364382, 2016.
374. Gupta V, Grande-Allen KJ. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72(3):375-383, 2006.
375. Hutcheson JD, Chen J, Sewell-Loftin MK, Ryzhova LM, Fisher CI, Su YR, Merryman WD. Cadherin-11 regulates cell-cell tension necessary for calcific nodule formation by valvular myofibroblasts. Arterioscler Thromb Vasc Biol 33(1):114-20, 2013.
376. Hutcheson JD, Venkataraman R, Baudenbacher FJ, Merryman WD. Intracellular Ca(2+) accumulation is strain-dependent and correlates with apoptosis in aortic valve fibroblasts. J Biomech 45(5):888-94, 2012.
377. Kapur NK, Deming CB, Kapur S, Bian C, Champion HC, Donahue JK, Kass DA, Rade JJ. Hemodynamic modulation of endocardial thromboresistance. Circulation 115(1):67-75, 2007.
378. Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One 9(5):e96577, 2014.
379. Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, Podewski E, Hilfiker A, Schroder F, Leitges M, Drexler H. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKC. Circ Res 96(7):748-755, 2005.
380. Krishnamurthy VK, Stout AJ, Sapp MC, Matuska B, Lauer ME, Grande-Allen KJ. Dysregulation of hyaluronan homeostasis during aortic valve disease. Matrix Biol 62:40-57, 2017.
381. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH, Chester AH. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71(3):548-556, 2006.
382. Patel V, Carrion K, Hollands A, Hinton A, Gallegos T, Dyo J, Sasik R, Leire E, Hardiman G, Mohamed SA, Nigam S, King CC, Nizet V, Nigam V. The stretch responsive microRNA miR-148a-3p is a novel repressor of IKBKB, NF-B signaling, and inflammatory gene expression in human aortic valve cells. FASEB J 29(5):1859-68, 2015.
383. Rakesh K, Yoo B, Kim IM, Salazar N, Kim KS, Rockman HA. -Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal 3(125):ra46, 2010.
384. Tamiello C, Bouten CV, Baaijens FP. Competition between cap and basal actin fiber orientation in cells subjected to contact guidance and cyclic strain. Sci Rep 5:8752, 2015.
385. Throm Quinlan AM, Sierad LN, Capulli AK, Firstenberg LE, Billiar KL. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8):e23272, 2011.
386. Tobita K, Garrison JB, Keller BB. Differential effects of cyclic stretch on embryonic ventricular cardiomyocyte and non-cardiomyocyte orientation. In: Cardiovascular Development and Congenital Malformations: Molecular & Genetic Mechanisms, Edited by Artman M, Benson DW, Srivastava D, Nakazawa M. Blackwell Futura Publishing:177-179, 2005.
387. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.
388. van Geemen D, Driessen-Mol A, Baaijens FP, Bouten CV. Understanding strain-induced collagen matrix development in engineered cardiovascular tissues from gene expression profiles. Cell Tissue Res 352(3):727-37, 2013.
389. Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 1(5):e00078, 2013.
25
CARTILAGE
ARTICULAR CHONDROCYTES
1. Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N. Role of NF-B transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 50(11):3541-3548, 2004.
2. Al-Sabah A, Stadnik P, Gilbert SJ, Duance VC, Blain EJ. Importance of reference gene selection for articular cartilage mechanobiology studies. Osteoarthritis Cartilage 24(4):719-30, 2016.
3. Beckmann R, Houben A, Tohidnezhad M, Kweider N, Fragoulis A, Wruck CJ, Brandenburg LO, Hermanns-Sachweh B, Goldring MB, Pufe T, Jahr H. Mechanical forces induce changes in VEGF and VEGFR-1/sFlt-1 expression in human chondrocytes. Int J Mol Sci 15(9):15456-74, 2014.
4. Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 10(3):e0119816, 2015.
5. Carvalho RS, Yen EH, Suga DM. Glycosaminoglycan synthesis in the rat articular disk in response to mechanical stress. American Journal of Orthodontics & Dentofacial Orthopedics 107(4):401-410, 1995.
6. Chen C, Wei X, Lv Z, Sun X, Wang S, Zhang Y, Jiao Q, Wang X, Li Y, Wei L. Cyclic equibiaxial tensile strain alters gene expression of chondrocytes via histone deacetylase 4 shuttling. PLoS One 11(5):e0154951, 2016.
7. Chen K, Yan Y, Li C, Yuan J, Wang F, Huang P, Qian N, Qi J, Zhou H, Zhou Q, Deng L, He C, Guo L. Increased 15-lipoxygenase-1 expression in chondrocytes contributes to the pathogenesis of osteoarthritis. Cell Death Dis 8(10):e3109, 2017. doi: 10.1038/cddis.2017.511.
8. Doi H, Nishida K, Yorimitsu M, Komiyama T, Kadota Y, Tetsunaga T, Yoshida A, Kubota S, Takigawa M, Ozaki T. Interleukin-4 downregulates the cyclic tensile stress-induced matrix metalloproteinases-13 and cathepsin B expression by rat normal chondrocytes. Acta Med Okayama 62(2):119-126, 2008.
9. Dossumbekova A, Anghelina M, Madhavan S, He L, Quan N, Knobloch T, Agarwal S. Biomechanical signals inhibit IKK activity to attenuate NF-B transcriptional activity in inflamed chondrocytes. Arthritis Rheum 56(10):3284–3296, 2007.
10. Fujisawa T, Hattori T, Takahashi K, Kuboki T, Yamashita A, Takigawa M. Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 125(5):966-975, 1999.
11. Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Tanaka S. Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. Journal of Laboratory and Clinical Medicine 130(2):209-215, 1997.
12. Gassner R, Buckley MJ, Georgescu H, Studer R, Stefanovich-Racic M, Piesco NP, Evans CH, Agarwal S. Cyclic tensile stress exerts antiinflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase. The Journal of Immunology 163:2187–2192, 1999.
13. Gassner R, Buckley MJ, Piesco N, Evans C, Agarwal S. Cytokine-induced nitric oxide production of joint cartilage cells in continuous passive movement. Anti-inflammatory effect of continuous passive movement on chondrocytes: in vitro study. Mund Kiefer Gesichtschir 4(Suppl 2):S479-S484, 2000.
14. Gassner RJ, Buckley MJ, Studer RK, Evans CH, Agarwal S. Interaction of strain and interleukin-1 in articular cartilage: effects on proteoglycan synthesis in chondrocytes. International Journal of Oral & Maxillofacial Surgery 29(5):389-394, 2000.
15. Hdud IM, Mobasheri A, Loughna PT. Effects of cyclic equibiaxial mechanical stretch on α-BK and TRPV4 expression in equine chondrocytes. Springerplus 3:59, 2014.
16. Holmvall K, Camper L, Johansson S, Kimura JH, Lundgren-Akerlund E. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res 221(2):496-503, 1995.
17. Honda K, Ohno S, Tanimoto K, Ijuin C, Tanaka N, Doi T, Kato Y, Tanne K. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol 79(9):601-609, 2000.
18. Huang J, Ballou LR, Hasty KA. Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 404:101–109, 2007.
19. Huang J, Eckstein E, Hasty KA. Increased production of MMP-2 induced by cyclic tensile strain from porcine articular chondrocytes is not surpressed by iNOS and COX inhibitors [abstract]. Transactions of the 51st Annual Meeting Orthopaedic Research Society 30:1468, 2005.
26
20. Huang J, Rho JY, Eckstein E, Hasty KA. Cyclic tension stress on porcine articular chondrocytes increases the production of nitric oxide and prostaglandin E2 in a coordinated manner [abstract]. Transactions of the 50th Annual Meeting Orthopaedic Research Society 29:825, 2004.
21. Huang J, Rho JY, Hasty KA. Cyclic tension stress regulates the metabolism of articular chondrocytes via different pathways [abstract]. Transactions of the 49th Annual Meeting Orthopaedic Research Society 28:640, 2003.
22. Iimoto S, Watanabe S, Takahashi T, Shimizu A, Yamamoto H. The influence of Celecoxib on matrix synthesis by chondrocytes under mechanical stress in vitro. Int J Mol Med 16(6):1083-1088, 2005.
23. Kawakita K, Nishiyama T, Fujishiro T, Hayashi S, Kanzaki N, Hashimoto S, Takebe K, Iwasa K, Sakata S, Nishida K, Kuroda R, Kurosaka M. Akt phosphorylation in human chondrocytes is regulated by p53R2 in response to mechanical stress. Osteoarthritis Cartilage 20(12):1603-9, 2012.
24. Lahiji K, Polotsky A, Hungerford DS, Frondoza CG. Cyclic strain stimulates proliferative capacity, 2 and 5 integrin, gene marker expression by human articular chondrocytes propagated on flexible silicone membranes. In Vitro Cell Dev Biol Anim 40(5-6):138-142, 2004.
25. Li XF, Zhang Z, Chen ZK, Cui ZW, Zhang HN. Piezo1 protein induces the apoptosis of human osteoarthritis-derived chondrocytes by activating caspase-12, the signaling marker of ER stress. Int J Mol Med 40(3):845-853, 2017.
26. Liu Q, Hu X, Zhang X, Dai L, Duan X, Zhou C, Ao Y. The TMSB4 pseudogene LncRNA functions as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis. Mol Ther 24(10):1726-1733, 2016.
27. Liu Q, Hu X, Zhang X, Duan X, Yang P, Zhao F, Ao Y. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci Rep 6:37268, 2016.
28. Liu Q, Zhang X, Hu X, Yuan L, Cheng J, Jiang Y, Ao Y. Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis. Mol Ther Nucleic Acids 7:223-230, 2017.
29. Long P, Gassner R, Agarwal S. Tumor necrosis factor -dependent proinflammatory gene induction is inhibited by cyclic tensile strain in articular chondrocytes in vitro. Arthritis Rheum 44(10):2311-9, 2001.
30. Madhavan S, Anghelina M, Rath-Deschner B, Wypasek E, John A, Deschner J, Piesco N, Agarwal S. Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthritis Cartilage 14(10):1023-32, 2006.
31. Marques MR, Hajjar D, Franchini KG, Moriscot AS, Santos MF. Mandibular appliance modulates condylar growth through integrins. J Dent Res 87(2):153-158, 2008.
32. Matsukawa M, Fukuda K, Yamasaki K, Yoshida K, Munakata H, Hamanishi C. Enhancement of nitric oxide and proteoglycan synthesis due to cyclic tensile strain loaded on chondrocytes attached to fibronectin. Inflamm Res 53(6):239-44, 2004.
33. Matsushita T, Fukuda K, Yamamoto H, Yamazaki K, Tomiyama T, Oh M, Hamanishi C. Effect of ebselen, a scavenger of reactive oxygen species, on chondrocyte metabolism. Mod Rheumatol 14(1):25-30, 2004.
34. Nishida K, Doi H, Shimizu A, Yorimitsu M, Takigawa M, Inoue H. The role of IL-4 in the control of mechanical stress-induced inflammatory mediators by rat chondrocytes [abstract]. Arthritis Res Ther 5(Suppl 3):57, 2003.
35. Rath B, Springorum HR, Deschner J, Luring C, Tingart M, Grifka J, Schaumburger J, Grassel S. Regulation of gene expression in articular cells is influenced by biomechanical loading. Central European Journal of Medicine 2012, doi: 10.2478/s11536-012-0008-x.
36. Shelton JC, Bader DL, Lee DA. Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs 175(3):140-150, 2003.
37. Shimizu A, Watanabe S, Iimoto S, Yamamoto H. Interleukin-4 protects matrix synthesis in chondrocytes under excessive mechanical stress in vitro. Modern Rheumatology 14(4):296-300, 2004.
38. Su SC, Tanimoto K, Tanne Y, Kunimatsu R, Hirose N, Mitsuyoshi T, Okamoto Y, Tanne K. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthritis Cartilage 22(6):845-51, 2014.
39. Tanaka S, Hamanishi C, Kikuchi H, Fukuda K. Factors related to degradation of articular cartilage in osteoarthritis: a review. Semin Arthritis Rheum 27(6):392-399, 1998.
40. Thomas RS, Clarke AR, Duance VC, Blain EJ. Effects of Wnt3A and mechanical load on cartilage chondrocyte homeostasis. Arthritis Res Ther 13(6):R203, 2011.
27
41. Thompson CL, Chapple JP, Knight MM. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes. Osteoarthritis Cartilage 22(3):490-8, 2014.
42. Xu HG, Zhang XH, Wang H, Liu P, Wang LT, Zuo CJ, Tong WX, Zhang XL. Intermittent cyclic mechanical tension-induced calcification and downregulation of ankh gene expression of end plate chondrocytes. Spine (Phila Pa 1976) 37(14):1192-1197, 2012.
43. Xu HG, Zheng Q, Song JX, Li J, Wang H, Liu P, Wang J, Wang CD, Zhang XL. Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk. Osteoarthritis Cartilage 24(1):158-68, 2016.
44. Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C. Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. Arthritis Rheum 48(11):3151-3158, 2003.
45. Yan L, Zhao L, Li S, Habibou Z. Effects of hedgehog pathway genes on the response to tensile force and inflammatory cytokines in rat condylar cartilage cells. Int J Clin Exp Pathol 9(8):7793-7799, 2016.
OTHER CARTILAGE CELLS
46. Agarwal S, Long P, Gassner R, Piesco NP, Buckley MJ. Cyclic tensile strain suppresses catabolic effects of interleukin-1 in fibrochondrocytes from the temporomandibular joint. Arthritis Rheum 44(3):608-617, 2001.
47. Chano T, Tanaka M, Hukuda S, Saeki Y. Mechanical stress induces the expression of high molecular mass heat shock protein in human chondrocytic cell line CS-OKB. Osteoarthritis Cartilage 8(2):115-119, 2000.
48. Chu F, Feng Q, Hu Z, Shen G. Appropriate cyclic tensile strain promotes biological changes of cranial base synchondrosis chondrocytes. Orthod Craniofac Res 20(3):177-182, 2017.
49. Deschner J, Rath-Deschner B, Agarwal S. Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage 14(3):264-272, 2006.
50. Deschner J, Rath-Deschner B, Wypasek E, Anghelina M, Sjostrom D, Agarwal S. Biomechanical strain regulates TNFR2 but not TNFR1 in TMJ cells. J Biomech 40(7):1541-1549, 2007.
51. Madhavan S, Anghelina M, Sjostrom D, Dossumbekova A, Guttridge DC, Agarwal S. Biomechanical signals suppress TAK1 activation to inhibit NF-B transcriptional activation in fibrochondrocytes. J Immunol 179(9):6246-6254, 2007.
52. Ohno S, Tanaka N, Ueki M, Honda K, Tanimoto K, Yoneno K, Ohno-Nakahara M, Fujimoto K, Kato Y, Tanne K. Mechanical regulation of terminal chondrocyte differentiation via RGD-CAP/ ig-h3 induced by TGF-. Connect Tissue Res 46(4-5):227-234, 2005.
53. Rath B, Springorum HR, Deschner J, Luring C, Tingart M, Grifka J, Schaumburger J, Grassel S. Regulation of gene expression in articular cells is influenced by biomechanicalloading. Central European Journal of Medicine 2012, doi: 10.2478/s11536-012-0008-x.
54. Ru-song Z, Zhu-li Y, Yan-xiao D, Chong-ying Y, Ping-ping J, Xiao Y. Effect of tensile stress on type II collagen and aggrecan expression in rat condylar chondrocytes. Chinese Journal of Tissue Engineering Research 16(20):3649-3653, 2012.
55. Steinecker-Frohnwieser B, Kaltenegger H, Weigl L, Mann A, Kullich W, Leithner A, Lohberger B. Pharmacological treatment with diacerein combined with mechanical stimulation affects the expression of growth factors in human chondrocytes. Biochemistry and Biophysics Reports 11:154-160, 2017.
56. Tanaka N, Ohno S, Honda K, Tanimoto K, Doi T, Ohno-Nakahara M, Tafolla E, Kapila S, Tanne K. Cyclic mechanical strain regulates the PTHrP expression in cultured chondrocytes via activation of the Ca2+ channel. J Dent Res 84(1):64-68, 2005.
57. Tanimoto K, Kamiya T, Tanne Y, Kunimatsu R, Mitsuyoshi T, Tanaka E, Tanne K. Superficial zone protein affects boundary lubrication on the surface of mandibular condylar cartilage. Cell Tissue Res 344(2):333-340, 2011.
58. Ueki M, Tanaka N, Tanimoto K, Nishio C, Honda K, Lin YY, Tanne Y, Ohkuma S, Kamiya T, Tanaka E, Tanne K. The effect of mechanical loading on the metabolism of growth plate chondrocytes. Ann Biomed Eng 36(5):793-800, 2008.
59. Xu H, Zhang X, Wang H, Zhang Y, Shi Y, Zhang X. Continuous cyclic mechanical tension increases ank expression in endplate chondrocytes through the TGF-β1 and p38 pathway. Eur J Histochem 57(3):e28, 2013.
28
DERMAL FIBROBLASTS
1. Cao TV, Hicks MR, Standley PR. In vitro biomechanical strain regulation of fibroblast wound healing. J Am Osteopath Assoc 113(11):806-18, 2013.
2. Hicks MR, Cao TV, Campbell DH, Standley PR. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation. J Appl Physiol (1985) 113(3):465-72, 2012.
3. Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B. Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J Biol Chem 276(39):36575-36585, 2001.
4. Kim YM, Kang YG, Park SH, Han MK, Kim JH, Shin JW, Shin JW. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells. Stem Cell Res Ther 8(1):139, 2017.
5. Kuang R, Wang Z, Xu Q, Liu S, Zhang W. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites. Int J Clin Exp Med 8(5):7641-7, 2015.
6. Lee E, Kim do Y, Chung E, Lee EA, Park KS, Son Y. Transplantation of cyclic stretched fibroblasts accelerates the wound-healing process in streptozotocin-induced diabetic mice. Cell Transplant 23(3):285-301, 2014.
7. Liu W, Yin L, Yan X, Cui J, Liu W, Rao Y, Sun M, Wei Q, Chen F. Directing the differentiation of parthenogenetic stem cells into tenocytes for tissue-engineered tendon regeneration. Stem Cells Transl Med 6(1):196-208, 2017.
8. Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, Standley PR. In vitro modeling of repetitive motion injury and myofascial release. J Bodyw Mov Ther 14(2):162-171, 2010.
9. Meltzer KR, Standley PR. Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion. J Am Osteopath Assoc 107(12):527-536, 2007.
10. Parsons M, Kessler E, Laurent GJ, Brown RA, Bishop JE. Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp Cell Res 252(2):319-331, 1999.
11. Peters AS, Brunner G, Krieg T, Eckes B. Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch Dermatol Res 307(2):191-7, 2015.
12. Rolin GL, Binda D, Tissot M, Viennet C, Saas P, Muret P, Humbert P. In vitro study of the impact of mechanical tension on the dermal fibroblast phenotype in the context of skin wound healing. J Biomech 47(14):3555-61, 2014.
13. Schmidt JB, Chen K, Tranquillo RT. Effects of intermittent and incremental cyclic stretch on ERK signaling and collagen production in engineered tissue. Cellular and Molecular Bioengineering 1-10, 2015.
14. Shelton JC, Bader DL, Lee DA. Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs 175(3):140-150, 2003.
15. Shu Q, Tan J, Ulrike VD, Zhang X, Yang J, Yang S, Hu X, He W, Luo G, Wu J. Involvement of eIF6 in external mechanical stretch-mediated murine dermal fibroblast function via TGF-β1 pathway. Sci Rep 6:36075, 2016.
16. Weinbaum JS, Schmidt JB, Tranquillo RT. Combating adaptation to cyclic stretching by prolonging activation of extracellular signal-regulated kinase. Cellular and Molecular Bioengineering 6(3):279-286, 2013.
17. Zein-Hammoud M, Standley PR. Modeled osteopathic manipulative treatments: a review of their in vitro effects on fibroblast tissue preparations. J Am Osteopath Assoc 115(8):490-502, 2015.
ENDOTHELIAL CELLS
CARDIOVASCULAR ENDOTHELIAL CELLS
See page 12
PULMONARY ENDOTHELIAL CELLS
See page 43
29
OTHER ENDOTHELIAL CELLS
1. Freese C, Schreiner D, Anspach L, Bantz C, Maskos M, Unger RE, Kirkpatrick CJ. In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Part Fibre Toxicol 11:68, 2014.
2. Hierck BP, Van der Heiden K, Alkemade FE, Van de Pas S, Van Thienen JV, Groenendijk BC, Bax WH, Van der Laarse A, Deruiter MC, Horrevoets AJ, Poelmann RE. Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237(3):725-35, 2008.
3. Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL. HIF-1 and HIF-2 play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583(Pt 2):753-766, 2007.
4. Milkiewicz M, Mohammadzadeh F, Ispanovic E, Gee E, Haas TL. Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. J Cell Biochem 100(3):750-761, 2007.
5. Suzuma I, Hata Y, Clermont A, Pokras F, Rook SL, Suzuma K, Feener EP, Aiello L. Cyclic stretch and hypertension induce retinal expression of vascular endothelial growth factor and vascular endothelial growth factor receptor–2: potential mechanisms for exacerbation of diabetic retinopathy by hypertension. Diabetes 50:444–454, 2001.
6. Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 10:78, 2010.
7. Wang Z, do Carmo JM, Aberdein N, Fang T, Hall JE. The role of TRPC6 channels in glomerular capillary endothelial cell injury induced by mechanic stretch and high glucose. The FASEB Journal 31(1 Supplement):1031-4, 2017.
8. Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE. Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 277(38):34808-34814, 2002.
EPITHELIAL CELLS
CACO-2 INTENSTINAL EPITHELIAL CELLS
1. Basson MD, Li GD, Hong F, Han O, Sumpio BE. Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J Cell Physiol 168(2):476-488, 1996.
2. Chaturvedi LS, Marsh HM, Shang X, Zheng Y, Basson MD. Repetitive deformation activates focal adhesion kinase and ERK mitogenic signals in human Caco-2 intestinal epithelial cells through Src and Rac1. J Biol Chem 282(1):14-28, 2007.
3. Chaturvedi LS, Gayer CP, Marsh HM, Basson MD. Repetitive deformation activates Src-independent FAK-dependent ERK motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 294:C1350–C1361, 2008.
4. Craig DH, Zhang J, Basson MD. Cytoskeletal signaling by way of -actinin-1 mediates ERK1/2 activation by repetitive deformation in human Caco2 intestinal epithelial cells. Am J Surg 194(5):618-622, 2007.
5. Gayer CP, Chaturvedi LS, Wang S, Craig DH, Flanigan T, Basson MD. Strain-induced proliferation requires the phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J Biol Chem 284:2001-2011, 2009.
6. Gayer CP, Chaturvedi LS, Wang S, Alston B, Flanigan TL, Basson MD. Delineating the signals by which repetitive deformation stimulates intestinal epithelial migration across fibronectin. Am J Physiol Gastrointest Liver Physiol 296(4):G876-G885, 2009.
7. Han O, Li GD, Sumpio BE, Basson MD. Strain induces Caco-2 intestinal epithelial proliferation and differentiation via PKC and tyrosine kinase signals. Am J Physiol 275(3 Pt 1):G534-G541, 1998.
8. Han O, Sumpio BE, Basson MD. Mechanical strain rapidly redistributes tyrosine phosphorylated proteins in human intestinal Caco-2 cells. Biochem Biophys Res Commun 250(3):668-673, 1998.
9. Kim HJ, Lee J, Choi JH, Bahinski A, Ingber DE. Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device. J Vis Exp 114, 2016.
10. Kim HJ, Li H, Collins JJ, Ingber DE. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113(1):E7-15, 2016.
30
11. Li W, Duzgun A, Sumpio BE, Basson MD. Integrin and FAK-mediated MAPK activation is required for cyclic strain mitogenic effects in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 280(1):G75-G87, 2001.
12. Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J 17(8):926-928, 2003.
13. Zhang J, Li W, Sumpio BE, Basson MD. Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells. Biochem Biophys Res Commun 306(3):746-749, 2003.
EYE EPITHELIAL CELLS
See page 31
GASTRIC EPITHELIAL CELLS
14. Alcamo AM, Schanbacher BL, Huang H, Nankervis CA, Bauer JA, Giannone PJ. Cellular strain amplifies LPS-induced stress signaling in immature enterocytes: potential implications for preterm infant NCPAP. Pediatr Res 72(3):256-61, 2012.
15. Osada T, Iijima K, Tanaka H, Hirose M, Yamamoto J, Watanabe S. Effect of temperature and mechanical strain on gastric epithelial cell line GSM06 wound restoration in vitro. J Gastroenterol Hepatol 14(5):489-494, 1999.
PULMONARY EPITHELIAL CELLS
See page 44
RENAL EPITHELIAL CELLS
See page 38
OTHER EPITHELIAL CELLS
16. Amura CR, Brodsky KS, Gitomer B, McFann K, Lazennec G, Nichols MT, Jani A, Schrier RW, Doctor RB. CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation. Am J Physiol Cell Physiol 294(3):C786-C796, 2008.
17. Dutta S, Mana-Capelli S, Paramasivam M, Dasgupta I, Cirka H, Billiar K, McCollum D. TRIP6 inhibits Hippo signaling in response to tension at adherens junctions. EMBO Rep. 2017 Dec 8. pii: e201744777. doi: 10.15252/embr.201744777. [Epub ahead of print]
18. Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Roskelley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci 130(1):152-163, 2017.
19. Gurbuz I, Ferralli J, Roloff T, Chiquet-Ehrismann R, Asparuhova MB. SAP domain-dependent Mkl1 signaling stimulates proliferation and cell migration by induction of a distinct gene set indicative of poor prognosis in breast cancer patients. Mol Cancer 13:22, 2014.
20. Haku K, Muramatsu T, Hara A, Kikuchi A, Hashimoto S, Inoue T, Shimono M. Epithelial cell rests of Malassez modulate cell proliferation, differentiation and apoptosis via gap junctional communication under mechanical stretching in vitro. Bull Tokyo Dent Coll 52(4):173-182, 2011.
21. Hegarty PK, Watson RW, Coffey RN, Webber MM, Fitzpatrick JM. Effects of cyclic stretch on prostatic cells in culture. J Urol 168(5):2291-2295, 2002.
22. Koshihara T, Matsuzaka K, Sato T, Inoue T. Effect of stretching force on the cells of epithelial rests of malassez in vitro. Int J Dent 2010:458408, 2010.
23. Mohan AR, Sooranna SR, Lindstrom TM, Johnson MR, Bennett PR. The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-B activity in human amnion cells. Endocrinology 148(4):1850-1857, 2007.
24. Wang J, Liu L, Xia Y, Wu D. Silencing of poly(ADP-ribose) polymerase-1 suppresses hyperstretch-induced expression of inflammatory cytokines in vitro. Acta Biochim Biophys Sin (Shanghai) 46(7):556-64, 2014.
EYE
1. Du GL, Chen WY, Li XN, He R, Feng PF. Induction of MMP‑1 and ‑3 by cyclical mechanical stretch is mediated by IL‑6 in cultured fibroblasts of keratoconus. Mol Med Rep 15(6):3885-3892, 2017.
31
2. Feng P, Li X, Chen W, Liu C, Rong S, Wang X, Du G. Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro. Biomed Eng Online 15(1):63, 2016.
3. Fujikura H, Seko Y, Tokoro T, Mochizuki M, Shimokawa H. Involvement of mechanical stretch in the gelatinolytic activity of the fibrous sclera of chicks, in vitro. Japanese Journal of Ophthalmology 46(1):24-30, 2002.
4. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor- and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009.
5. Kinoshita H, Suzuma K, Maki T, Maekawa Y, Matsumoto M, Kusano M, Uematsu M, Kitaoka T. Cyclic stretch and hypertension increase retinal succinate: potential mechanisms for exacerbation of ocular neovascularization by mechanical stress. Invest Ophthalmol Vis Sci 55(7):4320-6, 2014.
6. Kirwan RP, Crean JK, Fenerty CH, Clark AF, O'Brien CJ. Effect of cyclical mechanical stretch and exogenous transforming growth factor-1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J Glaucoma 13(4):327-334, 2004.
7. Kirwan RP, Fenerty CH, Crean J, Wordinger RJ, Clark AF, O'Brien CJ. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro. Mol Vis 11:798-810, 2005.
8. Qu J, Chen H, Zhu L, Ambalavanan N, Girkin CA, Murphy-Ullrich JE, Downs JC, Zhou Y. High-magnitude and/or high-frequency mechanical strain promotes peripapillary scleral myofibroblast differentiation. Invest Ophthalmol Vis Sci 56(13):7821-30, 2015.
9. Quill B, Docherty NG, Clark AF, O'Brien CJ. The effect of graded cyclic stretching on extracellular matrix-related gene expression profiles in cultured primary human lamina cribrosa cells. Invest Ophthalmol Vis Sci 52(3):1908-1915, 2011.
10. Rogers R, Dharsee M, Ackloo S, Flanagan JG. Proteomics analyses of activated human optic nerve head lamina cribrosa cells following biomechanical strain. Invest Ophthalmol Vis Sci 53(7):3806-16, 2912.
11. Shelton L, Rada JS. Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts. Exp Eye Res 84(2):314-322, 2007.
12. Suzuma I, Hata Y, Clermont A, Pokras F, Rook SL, Suzuma K, Feener EP, Aiello L. Cyclic stretch and hypertension induce retinal expression of vascular endothelial growth factor and vascular endothelial growth factor receptor–2: potential mechanisms for exacerbation of diabetic retinopathy by hypertension. Diabetes 50:444–454, 2001.
13. Suzuma I, Suzuma K, Takagi H, Kaneto H, Aiello L, Honda Y. 1P-0151 Cyclic stretch induced reactive oxygen species (ROS) enhances apoptosis in porcine retinal pericytes (PRPC) through JNK/SAPK activation [abstract]. Atherosclerosis Supplements 4(2):53, 2003.
14. Suzuma I, Suzuma K, Ueki K, Hata Y, Feener EP, King GL, Aiello LP. Stretch-induced retinal vascular endothelial growth factor expression is mediated by phosphatidylinositol 3-kinase and protein kinase C (PKC)- but not by stretch-induced ERK1/2, Akt, Ras, or classical/novel PKC pathways. J Biol Chem 277(2):1047-1057, 2002.
15. Wang G, Chen W. Effects of mechanical stimulation on viscoelasticity of rabbit scleral fibroblasts after posterior scleral reinforcement. Exp Biol Med 237(10):1150-1154, 2012.
16. Wang G, Hao S, Deng A. Effects of mechanical stimulation on TGF-β1 and bFGF expression of scleral fibroblasts after posterior sclera reinforcement. Complex Medical Engineering (CME), 2013 ICME International Conference on, 399-402, 2013.
17. Zhang W, Chen J, Backman LJ, Malm AD, Danielson P. Surface topography and mechanical strain promote keratocyte phenotype and extracellular matrix formation in a biomimetic 3D corneal model. Adv Healthc Mater 6(5), 2017.
EYE EPITHELIAL CELLS
18. Gao M, Wu S, Ji J, Zhang J, Liu Q, Yue Y, Liu L, Liu X, Liu W. The influence of actin depolymerization induced by Cytochalasin D and mechanical stretch on interleukin-8 expression and JNK phosphorylation levels in human retinal pigment epithelial cells. BMC Ophthalmol 17(1):43, 2017.
19. Oh JY, Jung KA, Kim MK, Wee WR, Lee JH. Effect of mechanical strain on human limbal epithelial cells in vitro. Curr Eye Res 31(12):1015-20, 2006.
20. Seko Y, Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci 40:3287–3291, 1999.
32
TRABECULAR MESHWORK CELLS
21. Aga M, Bradley JM, Keller KE, Kelley MJ, Acott TS. Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. Invest Ophthalmol Vis Sci 49(12):5353-5365, 2008.
22. Baetz NW, Hoffman EA, Yool AJ, Stamer WD. Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Exp Eye Res 89(1):95-100, 2009.
23. Chow J, Liton PB, Luna C, Wong F, Gonzalez P. Effect of cellular senescence on the P2Y-receptor mediated calcium response in trabecular meshwork cells. Mol Vis 13:1926-1933, 2007.
24. Chudgar SM, Deng P, Maddala R, Epstein DL, Rao PV. Regulation of connective tissue growth factor expression in the aqueous humor outflow pathway. Mol Vis 12:1117-1126, 2006.
25. Elliott MH, Ashpole NE, Gu X, Herrnberger L, McClellan ME, Griffith GL, Reagan AM, Boyce TM, Tanito M, Tamm ER, Stamer WD. Caveolin-1 modulates intraocular pressure: implications for caveolae mechanoprotection in glaucoma. Sci Rep 6:37127, 2016.
26. Iyer P, Lalane R 3rd, Morris C, Challa P, Vann R, Rao PV. Autotaxin-lysophosphatidic Acid axis is a novel molecular target for lowering intraocular pressure. PLoS One 7(8):e42627, 2012.
27. Liton PB, Liu X, Challa P, Epstein DL, Gonzalez P. Induction of TGF-1 in the trabecular meshwork under cyclic mechanical stress. J Cell Physiol 205(3):364-71, 2005.
28. Liton PB, Li G, Luna C, Gonzalez P, Epstein DL. Cross-talk between TGF-1 and IL-6 in human trabecular meshwork cells. Mol Vis 15:326-334, 2009.
29. Liu KC, Li G, Overby DR, Stamer WD. Role of VEGF in conventional outflow homeostasis. Investigative Ophthalmology & Visual Science 55(13):2910, 2014.
30. Luna C, Li G, Liton PB, Epstein DL, Gonzalez P. Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis 15:534-544, 2009.
31. Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 226(5):1407-1414, 2011.
32. Muralidharan AR, Maddala R, Skiba NP, Rao PV. Growth differentiation factor-15-induced contractile activity and extracellular matrix production in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 57(15):6482-6495, 2016.
33. Porter KM, Jeyabalan N, Liton PB. MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch. Biochim Biophys Acta 1843(6):1054-62, 2014.
34. Reina-Torres E, Wen JC, Liu KC, Li G, Sherwood JM, Chang JY, Challa P, Flügel-Koch CM, Stamer WD, Allingham RR, Overby DR. VEGF as a paracrine regulator of conventional outflow facility. Invest Ophthalmol Vis Sci 58(3):1899-1908, 2017.
35. Ryskamp DA, Frye AM, Phuong TT, Yarishkin O, Jo AO, Xu Y, Lakk M, Iuso A, Redmon SN, Ambati B, Hageman G, Prestwich GD, Torrejon KY, Križaj D. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye. Sci Rep 6:30583, 2016.
36. Wu J, Li G, Luna C, Spasojevic I, Epstein DL, Gonzalez P. Endogenous production of extracellular adenosine by trabecular meshwork cells: potential role in outflow regulation. Invest Ophthalmol Vis Sci 53(11):7142-8, 2012.
37. Wu S, Lu Q, Wang N, Zhang J, Liu Q, Gao M, Chen J, Liu W, Xu L. Cyclic stretch induced-retinal pigment epithelial cell apoptosis and cytokine changes. BMC Ophthalmol 17(1):208, 2017. doi: 10.1186/s12886-017-0606-0.
38. WuDunn D. The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells. Curr Eye Res 22(5):394-397, 2001.
GINGIVAL FIBROBLASTS
1. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel H, Tenenbaum H. Expression of mRNAs encoding for and integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79(9):1712-1716, 2000.
2. Danciu TE, Gagari E, Adam RM, Damoulis PD, Freeman MR. Mechanical strain delivers anti-apoptotic and proliferative signals to gingival fibroblasts. J Dent Res 83(8):596-601, 2004.
33
3. Grunheid T, Zentner A. Extracellular matrix synthesis, proliferation and death in mechanically stimulated human gingival fibroblasts in vitro. Clin Oral Investig 9(2):124-130, 2005.
4. Guo F, Carter DE, Leask A. Mechanical tension increases CCN2/CTGF expression and proliferation in gingival fibroblasts via a TGFβ-dependent mechanism. PLoS One 6(5):e19756, 2011.
5. Kimoto S, Matsuzawa M, Matsubara S, Komatsu T, Uchimura N, Kawase T, Saito S. Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-1 and macrophage colony stimulating factor. J Periodontal Res 34(5):235-243, 1999.
6. Morimoto T, Nishihira J, Kohgo T. Immunohistochemical localization of macrophage migration inhibitory factor (MIF) in human gingival tissue and its pathophysiological functions. Histochem Cell Biol 120(4):293-298, 2003.
7. Yoshino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts. J Periodontal Res 38(4):405-410, 2003.
INTERVERTEBRAL DISC
1. Cho H, Seth A, Warmbold J, Robertson JT, Hasty KA. Aging affects response to cyclic tensile stretch: paradigm for intervertebral disc degeneration. Eur Cell Mater 22:137-45; discussion 145-6, 2011.
2. Chuah YJ, Lee WC, Wong HK, Kang Y, Hee HT. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: an in-vitro study. Exp Cell Res 331(1):176-82, 2015.
3. Gilbert HT, Hoyland JA, Freemont AJ, Millward-Sadler SJ. The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration. Arthritis Res Ther 13(1):R8, 2011.
4. Gilbert HT, Hoyland JA, Millward-Sadler SJ. The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration. Arthritis Rheum 62(11):3385-3394, 2010.
5. Gilbert HT, Nagra NS, Freemont AJ, Millward-Sadler SJ, Hoyland JA. Integrin - dependent mechanotransduction in mechanically stimulated human annulus fibrosus cells: evidence for an alternative mechanotransduction pathway operating with degeneration. PLoS One 8(9):e72994, 2013.
6. Li S, Jia X, Duance VC, Blain EJ. The effects of cyclic tensile strain on the organisation and expression of cytoskeletal elements in bovine intervertebral disc cells: an in vitro study. Eur Cell Mater 21:508-22, 2011.
7. Li XF, Leng P, Zhang Z, Zhang HN. The Piezo1 protein ion channel functions in human nucleus pulposus cell apoptosis by regulating mitochondrial dysfunction and the endoplasmic reticulum stress signal pathway. Exp Cell Res 2017 Jul 10. pii: S0014-4827(17)30364-6. [Epub ahead of print]
8. Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Tamaki T. Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine 24(4):315-319, 1999.
9. Miyamoto H, Doita M, Nishida K, Yamamoto T, Sumi M, Kurosaka M. Effects of cyclic mechanical stress on the production of inflammatory agents by nucleus pulposus and anulus fibrosus derived cells in vitro. Spine 31(1):4-9, 2006.
10. Rannou F, Richette P, Benallaoua M, Francois M, Genries V, Korwin-Zmijowska C, Revel M, Corvol M, Poiraudeau S. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. J Cell Biochem 90(1):148-157, 2003.
11. Rannou F, Poiraudeau S, Foltz V, Boiteux M, Corvol M, Revel M. Monolayer anulus fibrosus cell cultures in a mechanically active environment: local culture condition adaptations and cell phenotype study. J Lab Clin Med 136(5):412-421, 2000.
12. Tisherman R, Coelho P, Phillibert D, Wang D, Dong Q, Vo N, Kang J, Sowa G. NF-B signaling pathway in controlling intervertebral disk cell response to inflammatory and mechanical stressors. Phys Ther 96(5):704-11, 2016.
13. Zhang YH, Zhao CQ, Jiang LS, Dai LY. Lentiviral shRNA silencing of CHOP inhibits apoptosis induced by cyclic stretch in rat annular cells and attenuates disc degeneration in the rats. Apoptosis 16(6):594-605, 2011.
14. Zhang Y, Zhao C, Jiang L, Dai L. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. European Spine Journal 20(8):1233-1243, 2011.
34
KERATINOCYTES
1. Cabral RM, Tattersall D, Patel V, McPhail GD, Hatzimasoura E, Abrams DJ, South AP, Kelsell DP. The DSPII splice variant is crucial for desmosome-mediated adhesion in HaCaT keratinocytes. J Cell Sci 125(Pt 12):2853-61, 2012.
2. Cherbuin T, Movahednia MM, Toh WS, Cao T. Investigation of human embryonic stem cell-derived keratinocytes as an in vitro research model for mechanical stress dynamic response. Stem Cell Rev 11(3):460-73, 2015.
3. Choi K, Mollapour E, Shears SB. Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cellular Signalling 17(12):1533-1541, 2005.
4. Gupta A, Nitoiu D, Brennan-Crispi D, Addya S, Riobo NA, Kelsell DP, Mahoney MG. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin a deregulation and a potential role in cell-cell adhesion. PLoS One 10(3):e0120091, 2015.
5. Le HQ, Ghatak S, Yeung CY, Tellkamp F, Günschmann C, Dieterich C, Yeroslaviz A, Habermann B, Pombo A, Niessen CM, Wickström SA. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol 18(8):864-75, 2016.
6. Lin Z, Zhao J, Nitoiu D, Scott CA, Plagnol V, Smith FJ, Wilson NJ, Cole C, Schwartz ME, McLean WH, Wang H, Feng C, Duo L, Zhou EY, Ren Y, Dai L, Chen Y, Zhang J, Xu X, O'Toole EA, Kelsell DP, Yang Y. Loss-of-function mutations in CAST cause peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads. Am J Hum Genet 96(3):440-7, 2015.
7. Maruthappu T, Chikh A, Fell B, Delaney PJ, Brooke MA, Levet C, Moncada-Pazos A, Ishida-Yamamoto A, Blaydon D, Waseem A, Leigh IM, Freeman M, Kelsell DP. Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16. Nat Commun 8:14174, 2017.
8. Pigors M, Sarig O, Heinz L, Plagnol V, Fischer J, Mohamad J, Malchin N, Rajpopat S, Kharfi M, Lestringant GG, Sprecher E, Kelsell DP, Blaydon DC. Loss-of-function mutations in SERPINB8 linked to exfoliative ichthyosis with impaired mechanical stability of intercellular adhesions. Am J Hum Genet 99(2):430-6, 2016.
9. Rosselli-Murai LK, Almeida LO, Zagni C, Galindo-Moreno P, Padial-Molina M, Volk SL, Murai MJ, Rios HF, Squarize CH, Castilho RM. Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway. PLoS One 8(12):e83580, 2013.
10. Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA. Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicology in Vitro 22(2):491-497, 2008.
11. Russell D, Andrews PD, James J, Lane EB. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci 117(Pt 22):5233-5243, 2004.
12. Shams K, Kurowska-Stolarska M, Schütte F, Burden AD, McKimmie CS, Graham GJ. MicroRNA-146 and cell trauma downregulate expression of the psoriasis-associated atypical chemokine receptor ACKR2. J Biol Chem. 2017 Dec 26. pii: jbc.M117.809780. doi: 10.1074/jbc.M117.809780. [Epub ahead of print]
13. Takei T, Han O, Ikeda M, Male P, Mills I, Sumpio BE. Cyclic strain stimulates isoform-specific PKC activation and translocation in cultured human keratinocytes. J Cell Biochem 67(3):327-337, 1997.
14. Takei T, Kito H, Du W, Mills I, Sumpio BE. Induction of interleukin (IL)-1 and gene expression in human keratinocytes exposed to repetitive strain: their role in strain-induced keratinocyte proliferation and morphological change. J Cell Biochem 69(2):95-103, 1998.
15. Takei T, Rivas-Gotz C, Delling CA, Koo JT, Mills I, McCarthy TL, Centrella M, Sumpio BE. Effect of strain on human keratinocytes in vitro. J Cell Physiol 173(1):64-72, 1997.
16. Zhou J, Wang J, Zhang N, Zhang Y, Li Q. Identification of biomechanical force as a novel inducer of epithelial-mesenchymal transition features in mechanical stretched skin. Am J Transl Res 7(11):2187-2198, 2015.
KIDNEY
1. Alexander LD, Alagarsamy S, Douglas JG. Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells. Kidney International 65(2):551-563, 2004.
35
2. Barutta F, Pinach S, Giunti S, Vittone F, Forbes JM, Chiarle R, Arnstein M, Perin PC, Camussi G, Cooper ME, Gruden G. Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 295(6):F1817-F1824, 2008.
3. Burger D, Thibodeau JF, Holterman CE, Burns KD, Touyz RM, Kennedy CR. Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J Am Soc Nephrol 25(7):1401-7, 2014.
4. Carey RM, McGrath HE, Pentz ES, Gomez RA, Barrett PQ. Biomechanical coupling in renin-releasing cells. J Clin Invest 100(6):1566-1574, 1997.
5. Delimont D, Dufek BM, Meehan DT, Zallocchi M, Gratton MA, Phillips G, Cosgrove D. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis. PLoS One 9(6):e99083, 2014.
6. Diamond JR, Kreisberg R, Evans R, Nguyen TA, Ricardo SD. Regulation of proximal tubular osteopontin in experimental hydronephrosis in the rat. Kidney International 54(5):1501-1509, 1998.
7. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R, Griffin S, Couser WG, Shankland SJ. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney International 65(1):30-39, 2004.
8. Durvasula RV, Shankland SJ. Mechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis. Am J Physiol Renal Physiol 289(3):F577-F584, 2005.
9. El Chaar M, Attia E, Chen J, Hannafin J, Poppas DP, Felsen D. Cyclooxygenase-2 inhibitor decreases extracellular matrix synthesis in stretched renal fibroblasts. Nephron Exp Nephrol 100(4):e150-155, 2005.
10. Giunti S, Pinach S, Arnaldi L, Viberti G, Perin PC, Camussi G, Gruden G. The MCP-1/CCR2 system has direct proinflammatory effects in human mesangial cells. Kidney Int 69(5):856-863, 2006.
11. Hegarty NJ, Watson RW, Young LS, O'Neill AJ, Brady HR, Fitzpatrick JM. Cytoprotective effects of nitrates in a cellular model of hydronephrosis. Kidney International 62(1):70-77, 2002.
12. Kiley SC, Chevalier RL. Species differences in renal Src activity direct EGF receptor regulation in life or death response to EGF. Am J Physiol Renal Physiol 293(3):F895-F903, 2007.
13. Kiley SC, Thornhill BA, Tang SS, Ingelfinger JR, Chevalier RL. Growth factor-mediated phosphorylation of proapoptotic BAD reduces tubule cell death in vitro and in vivo. Kidney International 63(1):33-42, 2003.
14. Lee JS, Lim JY, Kim J. Mechanical stretch induces angiotensinogen expression through PARP1 activation in kidney proximal tubular cells. In Vitro Cell Dev Biol Anim 51(1):72-8, 2015.
15. Li D, Lu Z, Jia J, Zheng Z, Lin S. Changes in microRNAs associated with podocytic adhesion damage under mechanical stress. J Renin Angiotensin Aldosterone Syst 14(2):97-102, 2013.
16. Maier S, Lutz R, Gelman L, Sarasa-Renedo A, Schenk S, Grashoff C, Chiquet M. Tenascin-C induction by cyclic strain requires integrin-linked kinase. Biochim Biophys Acta 1783(6):1150-1162, 2008.
17. Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol 286(4):F693-F701, 2004.
18. Miyajima A, Chen J, Lawrence C, Ledbetter S, Soslow RA, Stern J, Jha S, Pigato J, Lemer ML, Poppas DP, Vaughan ED, Felsen D. Antibody to transforming growth factor- ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney International 58(6):2301-2313, 2000.
19. Miyajima A, Chen J, Poppas DP, Vaughan ED, Felsen D. Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney International 59(4):1290-1303, 2001.
20. Morgera S, Schlenstedt J, Hambach P, Giessing M, Deger S, Hocher B, Neumayer HH. Combined ETA/ETB receptor blockade of human peritoneal mesothelial cells inhibits collagen I RNA synthesis. Kidney International 64:2033–2040, 2003.
21. Nguyen HT, Bride SH, Badawy AB, Adam RM, Lin J, Orsola A, Guthrie PD, Freeman MR, Peters CA. Heparin-binding EGF-like growth factor is up-regulated in the obstructed kidney in a cell- and region-specific manner and acts to inhibit apoptosis. American Journal of Pathology 156:889-898, 2000.
22. Orton DJ, Doucette AA, Maksym GN, Maclellan DL. Proteomic analysis of rat proximal tubule cells following stretch-induced apoptosis in an in vitro model of kidney obstruction. J Proteomics 100:125-35, 2014.
23. Ostergaard M, Christensen M, Nilsson L, Carlsen I, Frøkiær J, Nørregaard R. ROS dependence of cyclooxygenase-2 induction in rats subjected to unilateral ureteral obstruction. Am J Physiol Renal Physiol 306(2):F259-70, 2014.
24. Petermann AT, Hiromura K, Blonski M, Pippin J, Monkawa T, Durvasula R, Couser WG, Shankland SJ. Mechanical stress reduces podocyte proliferation in vitro. Kidney International 61(1):40-50, 2002.
36
25. Petermann AT, Pippin J, Durvasula R, Pichler R, Hiromura K, Monkawa T, Couser WG, Shankland SJ. Mechanical stretch induces podocyte hypertrophy in vitro. Kidney International 67(1):157-166, 2005.
26. Ricardo SD, Ding G, Eufemio M, Diamond JR. Antioxidant expression in experimental hydronephrosis: role of mechanical stretch and growth factors. Am J Physiol Renal Physiol 272:F789-F798, 1997.
27. Ricardo SD, Franzoni DF, Roesener CD, Crisman JM, Diamond JR. Angiotensinogen and AT(1) antisense inhibition of osteopontin translation in rat proximal tubular cells. Am J Physiol Renal Physiol 278(5):F708-F716, 2000.
28. Ryan MJ, Black TA, Gross KW, Hajduczok G. Cyclic mechanical distension regulates renin gene transcription in As4.1 cells. Am J Physiol Endocrinol Metab 279(4):E830-E837, 2000.
29. Ryan MJ, Gross KW, Hajduczok G. Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4.1 cells. Am J Physiol Endocrinol Metab 279(4):E823-E829, 2000.
30. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112(10):1486-1494, 2003.
31. Speight P, Kofler M, Szászi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun 7:11642, 2016.
32. Sussman AN, Sun T, Krofft RM, Durvasula RV. SPARC accelerates disease progression in experimental crescentic glomerulonephritis. Am J Pathol 174(5):1827-1836, 2009.
33. Tanner GA, McQuillan PF, Maxwell MR, Keck JK, McAteer JA. An in vitro test of the cell stretch-proliferation hypothesis of renal cyst enlargement J Am Soc Nephrol 6(4):1230-1241, 1995.
34. Wang Z, do Carmo JM, Aberdein N, Fang T, Hall JE. The role of TRPC6 channels in glomerular capillary endothelial cell injury induced by mechanic stretch and high glucose. The FASEB Journal 31(1 Supplement):1031-4, 2017.
MESANGIAL CELLS
35. Akai Y, Homma T, Burns KD, Yasuda T, Badr KF, Harris RC. Mechanical stretch/relaxation of cultured rat mesangial cells induces protooncogenes and cyclooxygenase. Am J Physiol Cell Physiol 267(2):C482-C490, 1994.
36. Barutta F, Pinach S, Giunti S, Vittone F, Forbes JM, Chiarle R, Arnstein M, Perin PC, Camussi G, Cooper ME, Gruden G. Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 295(6):F1817-F1824, 2008.
37. Chen G, Chen X, Sukumar A, Gao B, Curley J, Schnaper HW, Ingram AJ, Krepinsky JC. TGFβ receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci 126(Pt 16):3697-712, 2013.
38. Clarkson MR, Murphy M, Gupta S, Lambe T, Mackenzie HS, Godson C, Martin F, Brady HR. High glucose-altered gene expression in mesangial cells. Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly. J Biol Chem 277(12):9707-9712, 2002.
39. Cortes P, Zhao X, Riser BL, Narins RG. Role of glomerular mechanical strain in the pathogenesis of diabetic nephropathy. Kidney International 51(1):57-68, 1997.
40. Dlugosz JA, Munk S, Kapor-Drezgic J, Goldberg HJ, Fantus IG, Scholey JW, Whiteside CI. Stretch-induced mesangial cell ERK1/ERK2 activation is enhanced in high glucose by decreased dephosphorylation. Am J Physiol Renal Physiol 279:688-697, 2000.
41. Giunti S, Pinach S, Arnaldi L, Viberti G, Perin PC, Camussi G, Gruden G. The MCP-1/CCR2 system has direct proinflammatory effects in human mesangial cells. Kidney Int 69(5):856-863, 2006.
42. Gruden G, Araf S, Zonca S, Burt D, Thomas S, Gnudi L, Viberti G. IGF-I induces vascular endothelial growth factor in human mesangial cells via a Src-dependent mechanism. Kidney International 63(4):1249-1255, 2003.
43. Gruden G, Setti G, Hayward A, Sugden D, Duggan S, Burt D, Buckingham RE, Gnudi L, Viberti G. Mechanical stretch induces monocyte chemoattractant activity via an NF-B-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol 16(3):688-96, 2005.
44. Gruden G, Thomas S, Burt D, Lane S, Chusney G, Sacks S, Viberti G. Mechanical stretch induces vascular permeability factor in human mesangial cells: mechanisms of signal transduction. Proc Natl Acad Sci U S A 94(22):12112-12116, 1997.
37
45. Gruden G, Thomas S, Burt D, Zhou W, Chusney G, Gnudi L, Viberti G. Interaction of angiotensin II and mechanical stretch on vascular endothelial growth factor production by human mesangial cells. J Am Soc Nephrol 10(4):730-737, 1999.
46. Hayashi Y, Katoh T, Asano K, Onozaki A, Sakurai K, Asahi K, Nakayama M, Watanabe T. Mechanical stretch down-regulates expression of the Smad6 gene in cultured rat mesangial cells. Clin Exp Nephrol 16(5):690-696, 2012.
47. Hirakata M, Kaname S, Chung UG, Joki N, Hori Y, Noda M, Takuwa Y, Okazaki T, Fujita T, Katoh T, Kurokawa K. Tyrosine kinase dependent expression of TGF- induced by stretch in mesangial cells. Kidney Int 51(4):1028-36, 1997.
48. Homma T, Akai Y, Burns KD, Harris RC. Activation of S6 kinase by repeated cycles of stretching and relaxation in rat glomerular mesangial cells. Evidence for involvement of protein kinase C. J Biol Chem 267(32):23129-23135, 1992.
49. Hori Y, Katoh T, Hirakata M, Joki N, Kaname S, Fukagawa M, Okuda T, Ohashi H, Fujita T, Miyazono K, Kurokawa K. Anti-latent TGF- binding protein-1 antibody or synthetic oligopeptides inhibit extracellular matrix expression induced by stretch in cultured rat mesangial cells. Kidney Int 53:1616-1625, 1998.
50. Ingram AJ, James L, Cai L, Thai K, Ly H, Scholey JW. NO inhibits stretch-induced MAPK activity by cytoskeletal disruption. J Biol Chem 275(51):40301-40306, 2000.
51. Ingram AJ, James L, Ly H, Thai K, Cai L, Scholey JW. Nitric oxide modulates stretch activation of mitogen-activated protein kinases in mesangial cells. Kidney International 58(3):1067-1077, 2000.
52. Ingram AJ, James L, Ly H, Thai K, Scholey JW. Stretch activation of Jun N-terminal kinase/stress-activated protein kinase in mesangial cells. Kidney International 58(4):1431-1439, 2000.
53. Ingram AJ, James L, Thai K, Ly H, Cai L, Scholey JW. Nitric oxide modulates mechanical strain-induced activation of p38 MAPK in mesangial cells. Am J Physiol Renal Physiol 279(2):F243-F251, 2000.
54. Ingram AJ, Ly H, Thai K, Kang M, Scholey JW. Activation of mesangial cell signaling cascades in response to mechanical strain. Kidney International 55(2):476-485, 1999.
55. Ingram AJ, Ly H, Thai K, Kang MJ, Scholey JW. Mesangial cell signaling cascades in response to mechanical strain and glucose. Kidney International 56(5):1721-1728, 1999.
56. Krepinsky J, Ingram AJ, James L, Ly H, Thai K, Cattran DC, Miller JA, Scholey JW. 17-Estradiol modulates mechanical strain-induced MAPK activation in mesangial cells. J Biol Chem 277(11):9387-9394, 2002.
57. Krepinsky JC, Ingram AJ, Tang D, Wu D, Liu L, Scholey JW. Nitric oxide inhibits stretch-induced MAPK activation in mesangial cells through RhoA inactivation. J Am Soc Nephrol 14(11):2790-2800, 2003.
58. Krepinsky JC, Li Y, Chang Y, Liu L, Peng F, Wu D, Tang D, Scholey J, Ingram AJ. Akt mediates mechanical strain-induced collagen production by mesangial cells. J Am Soc Nephrol 16(6):1661-1672, 2005.
59. McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, Martin F, Brady HR. IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. Regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-1. J Biol Chem 275(14):9901-9904, 2000.
60. Peng F, Wu D, Ingram AJ, Zhang B, Gao B, Krepinsky JC. RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol 18(1):189-198, 2007.
61. Riser BL, Cortes P, Yee J, Sharba AK, Asano K, Rodriguez-Barbero A, Narins RG. Mechanical strain- and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-. J Am Soc Nephrol 9:827-836, 1998.
62. Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 11(1):25-38, 2000.
63. Riser BL, Ladson-Wofford S, Sharba A, Cortes P, Drake K, Guerin CJ, Yee J, Choi ME, Segarini PR, Narins RG. TGF- receptor expression and binding in rat mesangial cells: modulation by glucose and cyclic mechanical strain. Kidney International 56(2):428-439, 1999.
64. Riser BL, Varani J, Cortes P, Yee J, Dame M, Sharba AK. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis. Am J Pathol 158(1):11-17, 2001.
65. Yasuda T, Kondo S, Homma T, Harris RC. Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98(9):1991-2000, 1996.
38
66. Yasuda T, Kondo S, Owada S, Ishida M, Harris RC. Integrins and the cytoskeleton: focal adhesion kinase and paxillin. Nephrol Dial Transplant 14(Suppl 1):58-60, 1999.
67. Yatabe J, Sanada H, Yatabe MS, Hashimoto S, Yoneda M, Felder RA, Jose PA, Watanabe T. Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II. Am J Physiol Renal Physiol 296(5):F1052-F1060, 2009.
RENAL EPITHELIAL CELLS
68. Cachat F, Lange-Sperandio B, Chang AY, Kiley SC, Thornhill BA, Forbes MS, Chevalier RL. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney International 63(2):564-575, 2003.
69. Kiley SC, Thornhill BA, Belyea BC, Neale K, Forbes MS, Luetteke NC, Lee DC, Chevalier RL. Epidermal growth factor potentiates renal cell death in hydronephrotic neonatal mice, but cell survival in rats. Kidney International 68(2):504-514, 2005.
70. Nguyen HT, Hsieh MH, Gaborro A, Tinloy B, Phillips C, Adam RM. JNK/SAPK and p38 SAPK-2 mediate mechanical stretch-induced apoptosis via caspase-3 and -9 in NRK-52E renal epithelial cells. Nephron Exp Nephrol 102(2):e49-61, 2006.
71. Power RE, Doyle BT, Higgins D, Brady HR, Fitzpatrick JM, Watson RW. Mechanical deformation induced apoptosis in human proximal renal tubular epithelial cells is caspase dependent. J Urol 171(1):457-61, 2004.
72. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112(10):1486-1494, 2003.
LIGAMENT
PERIODONTAL LIGAMENT
1. Agarwal S, Long P, Seyedain A, Piesco N, Shree A, Gassner R. A central role for the nuclear factor-B pathway in anti-inflammatory and proinflammatory actions of mechanical strain. FASEB J 17(8):899-901, 2003.
2. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel H, Tenenbaum H. Expression of mRNAs encoding for and integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79(9):1712-1716, 2000.
3. Chang M, Lin H, Luo M, Wang J, Han G. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells. In Vitro Cell Dev Biol Anim. 51(8):797-807, 2015.
4. Chen YJ, Jeng JH, Chang HH, Huang MY, Tsai FF, Yao CC. Differential regulation of collagen, lysyl oxidase and MMP-2 in human periodontal ligament cells by low- and high-level mechanical stretching. J Periodontal Res 48(4):466-74, 2013.
5. Chen Y, Mohammed A, Oubaidin M, Evans CA, Zhou X, Luan X, Diekwisch TG, Atsawasuwan P. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene 566(1):13-7, 2015.
6. Chiba M, Mitani H. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress. Cell Biochemistry and Function 22(4):249-256, 2004.
7. Cho JH, Lee SK, Lee JW, Kim EC. The role of heme oxygenase-1 in mechanical stress- and lipopolysaccharide-induced osteogenic differentiation in human periodontal ligament cells. Angle Orthod 80(4):552-559, 2010.
8. Doi T, Ohno S, Tanimoto K, Honda K, Tanaka N, Ohno-Nakahara M, Yoneno K, Suzuki A, Nakatani Y, Ueki M, Tanne K. Mechanical stimuli enhances the expression of RGD-CAP/ ig-h3 in the periodontal ligament. Archives of Oral Biology 48(8):573-579, 2003.
9. Duarte WR, Mikuni-Takagaki Y, Kawase T, Limura T, Oida S, Ohya K, Takenaga K, Ishikawa L, Kasugai S. Effects of mechanical stress on the mRNA expression of S100A4 and cytoskeletal components by periodontal ligament cells. J Med Dent Sci 46(3):117-122, 1999.
39
10. Enokiya Y, Hashimoto S, Muramatsu T, Jung HS, Tazaki M, Inoue T, Abiko Y, Shimono M. Effect of stretching stress on gene transcription related to early-phase differentiation in rat periodontal ligament cells. Bull Tokyo Dent Coll 51(3):129-137, 2010.
11. Han Y, Pan J, Wang X, Qi Y, Wang S, Yan Z. Cyclic strain promotes migration and proliferation of human periodontal ligament cell via PI3K signaling pathway. Cellular and Molecular Bioengineering 3(4):369-375, 2010.
12. Huelter-Hassler D, Tomakidi P, Steinberg T, Jung BA. Orthodontic strain affects the Hippo-pathway effector YAP concomitant with proliferation in human periodontal ligament fibroblasts. Eur J Orthod 2017 Mar 17. doi: 10.1093/ejo/cjx012. [Epub ahead of print]
13. Jacobs C, Walter C, Ziebart T, Dirks I, Schramm S, Grimm S, Krieger E, Wehrbein H. Mechanical loading influences the effects of bisphosphonates on human periodontal ligament fibroblasts. Clin Oral Investig 19(3):699-708, 2015.
14. Jacobs C, Walter C, Ziebart T, Grimm S, Meila D, Krieger E, Wehrbein H. Induction of IL-6 and MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig 18(3):901-8, 2014.
15. Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res 85(5):457-462, 2006.
16. Kikuiri T, Hasegawa T, Yoshimura Y, Shirakawa T, Oguchi H. Cyclic tension force activates nitric oxide production in cultured human periodontal ligament cells. J Periodontol 71(4):533-539, 2000.
17. Kim HJ, Choi YS, Jeong MJ, KimBO, Lim SH, Kim DK, Kim CK, Park JC. Expression of UNCL during development of periodontal tissue and response of periodontal ligament fibroblasts to mechanical stress in vivo and in vitro. Cell Tissue Res 327(1):25-31, 2007.
18. Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW. Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering. PLoS One 11(3):e0149967, 2016.
19. Kimoto S, Matsuzawa M, Matsubara S, Komatsu T, Uchimura N, Kawase T, Saito S. Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-1 and macrophage colony stimulating factor. J Periodontal Res 34(5):235-243, 1999.
20. Lee SI, Park KH, Kim SJ, Kang YG, Lee YM, Kim EC. Mechanical stress-activated immune response genes via Sirtuin 1 expression in human periodontal ligament cells. Clin Exp Immunol 168(1):113-24, 2012.
21. Liu J, Li Q, Liu S, Gao J, Qin W, Song Y, Jin Z. Periodontal ligament stem cells in the periodontitis microenvironment are sensitive to static mechanical strain. Stem Cells Int 2017:1380851, 2017.
22. Liu M, Dai J, Lin Y, Yang L, Dong H, Li Y, Ding Y, Duan Y. Effect of the cyclic stretch on the expression of osteogenesis genes in human periodontal ligament cells. Gene 491(2):187-193, 2012.
23. Long P, Hu J, Piesco N, Buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL-1-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res 80(5):1416-1420, 2001.
24. Long P, Liu F, Piesco NP, Kapur R, Agarwal S. Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. Bone 30(4):547-552, 2002.
25. Matsuda N, Yokoyama K, Takeshita S, Watanabe M. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol 43(12):987-997, 1998.
26. Miura S, Yamaguchi M, Shimizu N, Abiko Y. Mechanical stress enhances expression and production of plasminogen activator in aging human periodontal ligament cells. Mechanisms of Ageing and Development 112(3):217-231, 2000.
27. Myokai F, Oyama M, Nishimura F, Ohira T, Yamamoto T, Arai H, Takashiba S, Murayama Y. Unique genes induced by mechanical stress in periodontal ligament cells. J Periodontal Res 38(3):255-261, 2003.
28. Nogueira AV, Nokhbehsaim M, Eick S, Bourauel C, Jäger A, Jepsen S, Cirelli JA, Deschner J. Regulation of visfatin by microbial and biomechanical signals in PDL cells. Clin Oral Investig 18(1):171-8, 2014.
29. Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Jäger A, Jepsen S, Deschner J. Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro. Clin Oral Investig 16(1):275-283, 2012.
30. Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Rath B, Jäger A, Jepsen S, Deschner J. Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein-2 in periodontal ligament cells. J Periodontal Res 46(3):374-381, 2011.
40
31. Nokhbehsaim M, Deschner B, Winter J, Reimann S, Bourauel C, Jepsen S, Jäger A, Deschner J. Contribution of orthodontic load to inflammation-mediated periodontal destruction. J Orofac Orthop 71(6):390-402, 2010.
32. Ohzeki K, Yamaguchi M, Shimizu N, Abiko Y. Effect of cellular aging on the induction of cyclooxygenase-2 by mechanical stress in human periodontal ligament cells. Mechanisms of Ageing and Development 108(2):151-163, 1999.
33. Ozaki S, Kaneko S, Podyma-Inoue KA, Yanagishita M, Soma K. Modulation of extracellular matrix synthesis and alkaline phosphatase activity of periodontal ligament cells by mechanical stress. J Periodontal Res 40(2):110-117, 2005.
34. Ozawa Y, Shimizu N, Abiko Y. Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 21(5):456-463, 1997.
35. Pan J, Wang T, Wang L, Chen W, Song M. Cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells via the Rho signaling pathway. PLoS One 9(3):e91580, 2014.
36. Rosselli-Murai LK, Almeida LO, Zagni C, Galindo-Moreno P, Padial-Molina M, Volk SL, Murai MJ, Rios HF, Squarize CH, Castilho RM. Periostin responds to mechanical stress and tension by activating the MTOR signaling pathway. PLoS One 8(12):e83580, 2013.
37. Saeki Y, Ohara A, Nishikawa M, Yamamoto T, Yamamoto G. The presence of arachidonic acid-activated K+ channel, TREK-1, in human periodontal ligament fibroblasts. Drug Metab Rev 39(2-3):457-465, 2007.
38. Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 47(2):212-221, 2012.
39. Saminathan A, Vinoth KJ, Low HH, Cao T, Meikle MC. Engineering three-dimensional constructs of the periodontal ligament in hyaluronan-gelatin hydrogel films and a mechanically active environment. J Periodontal Res 2013 Apr 15.
40. Shen T, Qiu L, Chang H, Yang Y, Jian C, Xiong J, Zhou J, Dong S. Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int J Clin Exp Pathol 7(11):7872-80, 2014.
41. Shimizu N, Yamaguchi M, Uesu K, Goseki T, Abiko Y. Stimulation of prostaglandin E2 and interleukin-1production from old rat periodontal ligament cells subjected to mechanical stress. J Gerontol A Biol Sci Med Sci 55(10):B489-B495, 2000.
42. Sun C, Liu F, Cen S, Chen L, Wang Y, Sun H, Deng H, Hu R. Tensile strength suppresses the osteogenesis of periodontal ligament cells in inflammatory microenvironments. Mol Med Rep 16(1):666-672, 2017.
43. Tsuji K, Uno K, Zhang GX, Tamura M. Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22(2):94-103, 2004.
44. Wang L, Pan J, Wang T, Song M, Chen W. Pathological cyclic strain-induced apoptosis in human periodontal ligament cells through the RhoGDIα/caspase-3/PARP pathway. PLoS One 8(10):e75973, 2013.
45. Wei FL, Wang JH, Ding G, Yang SY, Li Y, Hu YJ, Wang SL. Mechanical force-induced specific microRNA expression in human periodontal ligament stem cells. Cells Tissues Organs 199(5-6):353-63, 2014.
46. Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010.
47. Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86(12):1212-1216, 2007.
48. Wu J, Song M, Li T, Zhu Z, Pan J. The Rho-mDia1 signaling pathway is required for cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells. Exp Cell Res 337(1):28-36, 2015.
49. Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Archives of Oral Biology 39(10):877-884, 1994.
50. Yamaguchi M, Shimizu N, Ozawa Y, Saito K, Miura S, Takiguchi H, Iwasawa T, Abiko Y. Effect of tension-force on plasminogen activator activity from human periodontal ligament cells. J Periodontal Res 32(3):308-314, 1997.
51. Yamaguchi M, Shimizu N. Identification of factors mediating the decrease of alkaline phosphatase activity caused by tension-force in periodontal ligament cells. General Pharmacology 25(6):1229-1235, 1994.
52. Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Archives of Oral Biology 47(6):465-471, 2002.
41
53. Yamashiro K, Myokai F, Hiratsuka K, Yamamoto T, Senoo K, Arai H, Nishimura F, Abiko Y, Takashiba S. Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. The International Journal of Biochemistry & Cell Biology 39(5):910-921, 2007.
54. Yoshino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts. J Periodontal Res 38(4):405-410, 2003.
KNEE LIGAMENTS
55. Hannafin JA, Attia EA, Henshaw R, Warren RF, Bhargava MM. Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res 24(2):149-58, 2005.
56. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.
57. Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KL. Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18(2):220-227, 2000.
58. Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech 38(8):1653-1664, 2005.
59. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.
60. Lee CY, Liu X, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate. Matrix Biology 23(5):323-329, 2004.
61. Lee CY, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP. Tensile forces attenuate estrogen-stimulated collagen synthesis in the ACL. Biochemical and Biophysical Research Communications 317:1221–1225, 2004.
62. Sun L, Qu L, Zhu R, Li H, Xue Y, Liu X, Fan J, Fan H. Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int 2016:9842075 2016.
63. Wang C, Xie J, Jiang J, Huang W, Chen R, Xu C, Zhang Y, Fu C, Yang L, Chen PC, Sung KL. Differential expressions of the lysyl oxidase family and matrix metalloproteinases-1, 2, 3 in posterior cruciate ligament fibroblasts after being co-cultured with synovial cells. Int Orthop 39(1):183-91. 2015.
64. Xie J, Wang CL, Yang W, Wang J, Chen C, Zheng L, Sung KP, Zhou X. Modulation of MMP-2 and -9 through connected pathways and growth factors is critical for extracellular matrix balance of intra-articular ligaments. J Tissue Eng Regen Med 2016 Sep 29. doi: 10.1002/term.2325. [Epub ahead of print].
OTHER LIGAMENT CELLS
65. Chen D, Liu Y, Yang H, Chen D, Zhang X, Fermandes JC, Chen Y. Connexin 43 promotes ossification of the posterior longitudinal ligament through activation of the ERK1/2 and p38 MAPK pathways. Cell Tissue Res 363(3):765-73, 2016.
66. Ewies AA, Elshafie M, Li J, Stanley A, Thompson J, Styles J, White I, Al-Azzawi F. Changes in transcription profile and cytoskeleton morphology in pelvic ligament fibroblasts in response to stretch: the effects of estradiol and levormeloxifene. Mol Hum Reprod 14(2):127-135, 2008.
67. Nakatani T, Marui T, Hitora T, Doita M, Nishida K, Kurosaka M. Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-1. J Orthop Res 20(6):1380-1386, 2002.
68. Ning S, Chen Z, Fan D, Sun C, Zhang C, Zeng Y, Li W, Hou X, Qu X, Ma Y, Yu H. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress. Int J Mol Med 39(1):135-143, 2017.
69. Yang HS, Lu XH, Chen DY, Yuan W, Yang LL, Chen Y, He HL. Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Eur Spine J 20(9):1459-1465, 2011.
70. Zhang W, Wei P, Chen Y, Yang L, Jiang C, Jiang P, Chen D. Down-regulated expression of vimentin induced by mechanical stress in fibroblasts derived from patients with ossification of the posterior longitudinal ligament. Eur Spine J 23(11):2410-5, 2014.
42
LIVER
1. Amura CR, Brodsky KS, Gitomer B, McFann K, Lazennec G, Nichols MT, Jani A, Schrier RW, Doctor RB. CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation. Am J Physiol Cell Physiol 294(3):C786-C796, 2008.
2. González-Avalos P, Mürnseer M, Deeg J, Bachmann A, Spatz J, Dooley S, Eils R, Gladilin E. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework. J Microsc 266(2):115-125, 2017.
3. Peccerella T, Rausch V, Longerich T, Lasitschka F, Poth T, Mueller S. Non-inflammatory liver congestion causes bridging fibrosis via biomechanic signaling of stellate cells: Evidence for pressure-induced cirrhosis. Zeitschrift für Gastroenterologie 55(08), KV-313, 2017.
4. Sakata R, Ueno T, Nakamura T, Ueno H, Sata M. Mechanical stretch induces TGF- synthesis in hepatic stellate cells. Eur J Clin Invest 34(2):129-136, 2004.
LUNG
ALVEOLAR MACROPHAGES
1. Edwards YS, Sutherland LM, Murray AW. NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung. Am J Physiol Lung Cell Mol Physiol 279(6):L1236-L1242, 2000.
2. Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291(6):L1191-8, 2006.
3. Wu J, Yan Z, Schwartz DE, Yu J, Malik AB, Hu G. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury. J Immunol 190(7):3590-9, 2013.
LUNG FIBROBLASTS
4. Aljamal-Naylor R, Wilson L, McIntyre S, Rossi F, Harrison B, Marsden M, Harrison DJ. Allosteric modulation of 1 integrin function induces lung tissue repair. Adv Pharmacol Sci 2012:768720, 2012.
5. Breen EC, Fu Z, Norman H. Calcyclin gene expression is increased by mechanical strain in fibroblasts and lung. Am J Respir Cell Mol Biol 21:746–752, 1999.
6. Breen EC. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol 88(1):203-209, 2000.
7. Blaauboer ME, Boeijen FR, Emson CL, Turner SM, Zandieh-Doulabi B, Hanemaaijer R, Smit TH, Stoop R, Everts V. Extracellular matrix proteins: a positive feedback loop in lung fibrosis? Matrix Biol 34:170-8, 2014.
8. Blaauboer ME, Smit TH, Hanemaaijer R, Stoop R, Everts V. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts. Biochem Biophys Res Commun 404(1):23-27, 2011.
9. Copland IB, Reynaud D, Pace-Asciak C, Post M. Mechanotransduction of stretch-induced prostanoid release by fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 291(3):L487-L495, 2006.
10. Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, Podewski E, Hilfiker A, Schroder F, Leitges M, Drexler H. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKC. Circ Res 96(7):748-755, 2005.
11. Le Bellego F, Plante S, Chakir J, Hamid Q, Ludwig MS. Differences in MAP kinase phosphorylation in response to mechanical strain in asthmatic fibroblasts. Respir Res 7:68, 2006.
12. Liu J, Yu W, Liu Y, Chen S, Huang Y, Li X, Liu C, Zhang Y, Li Z, Du J, Tang C, Du J, Jin H. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway. Sci Rep 6:21112, 2016.
13. Manuyakorn W, Smart DE, Noto A, Bucchieri F, Haitchi HM, Holgate ST, Howarth PH, Davies DE. Mechanical strain causes adaptive change in bronchial fibroblasts enhancing profibrotic and inflammatory responses. PLoS One 11(4):e0153926, 2016.
14. Sanchez-Esteban J, Wang Y, Cicchiello LA, Rubin LP. Pre- and postnatal lung development, maturation, and plasticity. Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 282(3):L448-L456, 2002.
43
15. Wang GH, Xi XP. Effects of mechanical stimulation on viscoelasticity of human lung fibroblast. Applied Mechanics and Materials 432: 398, 2013.
MESOTHELIAL CELLS
16. Brown SC, Kamal M, Nasreen N, Baumuratov A, Sharma P, Antony VB, Moudgil BM. Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Tech 18(1):69-79, 2007.
17. He Z, Potter R, Li X, Flessner M. Stretch of human mesothelial cells increases cytokine expression. Adv Perit Dial 28:2-9, 2012.
18. Waters CM, Chang JY, Glucksberg MR, DePaola N, Grotberg JB. Mechanical forces alter growth factor release by pleural mesothelial cells. Am J Physiol 272(3 Pt 1):L552-L557, 1997.
PULMONARY ENDOTHELIAL CELLS
19. Abdulnour RE, Peng X, Finigan JH, Han EJ, Hasan EJ, Birukov KG, Reddy SP, Watkins JE 3rd, Kayyali US, Garcia JG, Tuder RM, Hassoun PM. Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. Am J Physiol Lung Cell Mol Physiol 291(3):L345-L353, 2006.
20. Adyshev DM, Elangovan VR, Moldobaeva N, Mapes B, Sun X, Garcia JG. Mechanical stress induces pre-B-cell colony-enhancing factor/NAMPT expression via epigenetic regulation by miR-374a and miR-568 in human lung endothelium. Am J Respir Cell Mol Biol 50(2):409-18, 2014.
21. Ali MH, Mungai PT, Schumacker PT. Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol 291(1):L38-L45, 2006.
22. Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285(4):L785-L797, 2003.
23. Birukova AA, Chatchavalvanich S, Rios A, Kawkitinarong K, Garcia JG, Birukov KG. Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. Am J Pathol 168(5):1749-1761, 2006.
24. Birukova AA, Fu P, Xing J, Cokic I, Birukov KG. Lung endothelial barrier protection by iloprost in the 2-hit models of ventilator-induced lung injury (VILI) involves inhibition of Rho signaling. Transl Res 155(1):44-54, 2010.
25. Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 298(6):L837-848, 2010.
26. Birukova AA, Moldobaeva N, Xing J, Birukov KG. Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. Am J Physiol Lung Cell Mol Physiol 295(4):L612-L623, 2008.
27. Birukova AA, Rios A, Birukov KG. Long-term cyclic stretch controls pulmonary endothelial permeability at translational and post-translational levels. Exp Cell Res 314(19):3466-3477, 2008.
28. Birukova AA, Tian Y, Meliton A, Leff A, Wu T, Birukov KG. Stimulation of Rho signaling by pathologic mechanical stretch is a "second hit" to Rho-independent lung injury induced by IL-6. Am J Physiol Lung Cell Mol Physiol 302(9):L965-75, 2012.
29. Chen W, Epshtein Y, Ni X, Dull RO, Cress AE, Garcia JG, Jacobson JR. Role of integrin β4 in lung endothelial cell inflammatory responses to mechanical stress. Sci Rep 5:16529, 2015.
30. Dong WW, Liu YJ, Lv Z, Mao YF, Wang YW, Zhu XY, Jiang L. Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism. Free Radic Biol Med 88(Pt B):404-16, 2015.
31. Dubrovskyi O, Birukova AA, Birukov KG. Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Lab Invest 93(2):254-63, 2013.
32. Elangovan VR, Camp SM, Kelly GT, Desai AA, Adyshev D, Sun X, Black SM, Wang T, Garcia JG. Endotoxin- and mechanical stress–induced epigenetic changes in the regulation of the nicotinamide phosphoribosyltransferase promoter. Pulmonary Circulation 6(4):539-544, 2016.
33. Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 284(3):L541-L547, 2003.
34. Gawlak G, Tian Y, O'Donnell JJ 3rd, Tian X, Birukova AA, Birukov KG. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex. FASEB J 28(7):3249-60, 2014.
44
35. Grigoryev DN, Ma SF, Irizarry RA, Ye SQ, Quackenbush J, Garcia JG. Orthologous gene-expression profiling in multi-species models: search for candidate genes. Genome Biol 5(5):R34, 2004.
36. Kobayashi K, Tanaka M, Nebuya S, Kokubo K, Fukuoka Y, Harada Y, Kobayashi H, Noshiro M, Inaoka H. Temporal change in IL-6 mRNA and protein expression produced by cyclic stretching of human pulmonary artery endothelial cells. Int J Mol Med 30(3):509-13, 2012.
37. Limbourg A, von Felden J, Jagavelu K, Krishnasamy K, Napp LC, Kapopara PR, Gaestel M, Schieffer B, Bauersachs J, Limbourg FP, Bavendiek U. MAP-kinase activated protein kinase 2 links endothelial activation and monocyte/macrophage recruitment in arteriogenesis. PLoS One 10(10):e0138542, 2015.
38. Liu WF, Nelson CM, Tan JL, Chen CS. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res 101(5):e44-e52, 2007.
39. Mascarenhas JB, Tchourbanov AY, Fan H, Danilov SM, Wang T, Garcia JG. Mechanical stress and single nucleotide variants regulate alternative splicing of the MYLK gene. Am J Respir Cell Mol Biol 56(1):29-37, 2017. doi: 10.1165/rcmb.2016-0053OC.
40. Michalick L, Erfinanda L, Weichelt U, van der Giet M, Liedtke W, Kuebler WM. Transient receptor potential vanilloid 4 and serum glucocorticoid-regulated kinase 1 are critical mediators of lung injury in overventilated mice in vivo. Anesthesiology 126(2):300-311, 2017.
41. Mitra S, Wade MS, Sun X, Moldobaeva N, Flores C, Ma SF, Zhang W, Garcia JG, Jacobson JR. GADD45a promoter regulation by a functional genetic variant associated with acute lung injury. PLoS One 9(6):e100169, 2014.
42. Moldobaeva A, Rentsendorj O, Jenkins J, Wagner EM. Nitric oxide synthase promotes distension-induced tracheal venular leukocyte adherence. PLoS One 9(9):e106092, 2014.
43. Nonas S, Birukova AA, Fu P, Xing J, Chatchavalvanich S, Bochkov VN, Leitinger N, Garcia JG, Birukov KG. Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. Crit Care 12(1):R27, 2008.
44. O'Donnell JJ 3rd, Birukova AA, Beyer EC, Birukov KG. Gap junction protein connexin43 exacerbates lung vascular permeability. PLoS One 9(6):e100931, 2014.
45. Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG. Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cell. Experimental Cell Research 304(1):40-49, 2005.
46. Sun X, Elangovan VR, Mapes B, Camp SM, Sammani S, Saadat L, Ceco E, Ma SF, Flores C, MacDougall MS, Quijada H, Liu B, Kempf CL, Wang T, Chiang ET, Garcia JG. The NAMPT promoter is regulated by mechanical stress, signal transducer and activator of transcription 5, and acute respiratory distress syndrome-associated genetic variants. Am J Respir Cell Mol Biol 51(5):660-7, 2014.
47. Tian Y, Gawlak G, O'Donnell JJ 3rd, Mambetsariev I, Birukova AA. Modulation of endothelial inflammation by low and high magnitude cyclic stretch. PLoS One 11(4):e0153387, 2016.
48. Tirlapur N, O'Dea K, Soni S, Davies R, Sooranna S, Johnson M, Wilson M, Takata M. Pathological stretch of endothelial cells activates marginated monocytes to release microvesicles in an in vitro model of ventilator-induced lung injury [abstract]. American Journal of Respiratory and Critical Care Medicine 195:A4780, 2017.
49. Vion AC, Birukova AA, Boulanger CM, Birukov KG. Mechanical forces stimulate endothelial microparticle generation via caspase-dependent apoptosis-independent mechanism. Pulm Circ 3(1):95-9, 2013.
50. Wang Y, Xu CF, Liu YJ, Mao YF, Lv Z, Li SY, Zhu XY, Jiang L. Salidroside attenuates ventilation induced lung injury via SIRT1-dependent inhibition of NLRP3 inflammasome. Cell Physiol Biochem 42(1):34-43, 2017.
51. Wedgwood S, Devol JM, Grobe A, Benavidez E, Azakie A, Fineman JR, Black SM. Fibroblast growth factor-2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 61(1):32-36, 2007.
52. Wolfson RK, Mapes B, Garcia JG. Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3. Microvasc Res 92:50-5, 2014.
PULMONARY EPITHELIAL CELLS
53. Belete HA, Hubmayr RD, Wang S, Singh RD. The role of purinergic signaling on deformation induced injury and repair responses of alveolar epithelial cells. PLoS One 6(11):e27469, 2011.
45
54. Budinger GR, Urich D, DeBiase PJ, Chiarella SE, Burgess ZO, Baker CM, Soberanes S, Mutlu GM, Jones JC. Stretch-induced activation of AMP kinase in the lung requires dystroglycan. Am J Respir Cell Mol Biol 39(6):666-672, 2008.
55. Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289(5):L834-L841, 2005.
56. Charles PE, Tissières P, Barbar SD, Croisier D, Dufour J, Dunn-Siegrist I, Chavanet P, Pugin J. Mild-stretch mechanical ventilation upregulates toll-like receptor 2 and sensitizes the lung to bacterial lipopeptide. Crit Care 15(4):R181, 2011.
57. Chaturvedi LS, Marsh HM, Basson MD. Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells. Am J Physiol Cell Physiol 292(5):C1701-C1713, 2007.
58. Chess PR, O'Reilly MA, Sachs F, Finkelstein JN. Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol 99(3):1226-1232, 2005.
59. Chess PR, O'Reilly MA, Toia L. Macroarray analysis reveals a strain-induced oxidant response in pulmonary epithelial cells. Exp Lung Res 30(8):739-53, 2004.
60. Chess PR, Toia L, Finkelstein JN. Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells. Am J Physiol Lung Cell Mol Physiol 279:L43-L51, 2000.
61. Copland IB, Post M. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J Cell Physiol 210(1):133-143, 2007.
62. Copland IB, Reynaud D, Pace-Asciak C, Post M. Mechanotransduction of stretch-induced prostanoid release by fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 291(3):L487-L495, 2006.
63. Correa-Meyer E, Pesce L, Guerrero C, Sznajder JI. Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 282(5):L883-L891, 2002.
64. Desai LP, Chapman KE, Waters CM. Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1. Am J Physiol Lung Cell Mol Physiol 295(5):L958-L965, 2008.
65. Desai LP, White SR, Waters CM. Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 297(3):L520-L529, 2009.
66. Desai LP, White SR, Waters CM. Cyclic mechanical stretch decreases cell migration by inhibiting phosphatidylinositol 3-kinase- and focal adhesion kinase-mediated JNK1 activation. J Biol Chem 285(7):4511-4519, 2010.
67. Ding N, Xiao H, Xu LX, She SZ. Effect of mitogen-activated protein kinase kinase 6-p38 signal pathway on receptor for advanced glycation end-product expression in alveolar epithelial cells induced by mechanical stretch. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 21(10):597-600, 2009.
68. dos Santos CC, Han B, Andrade CF, Bai X, Uhlig S, Hubmayr R, Tsang M, Lodyga M, Keshavjee S, Slutsky AS, Liu M. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNF, LPS, and cyclic stretch. Physiol Genomics 19(3):331-342, 2004.
69. Eckle T, Brodsky K, Bonney M, Packard T, Han J, Borchers CH, Mariani TJ, Kominsky DJ, Mittelbronn M, Eltzschig HK. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol 11(9):e1001665, 2013.
70. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. The Journal of Immunology 178:8127-8137, 2007.
71. Eckle T, Kewley EM, Brodsky KS, Tak E, Bonney S, Gobel M, Anderson D, Glover LE, Riegel AK, Colgan SP, Eltzschig HK. Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J Immunol 192(3):1249-56, 2014.
72. Edwards YS, Sutherland LM, Murray AW. NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung. Am J Physiol Lung Cell Mol Physiol 279(6):L1236-L1242, 2000.
73. Edwards YS, Sutherland LM, Power JHT, Nicholas TE, Murray AW. Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Letters 448(1):127-130, 1999.
74. Englert JA, Isabelle C, Henske EP, Choi AM, Baron RM. MTORC1 is activated in airway epithelial cells in a murine VILI model and following in vitro stretch. Am J Respir Crit Care Med 191:A2383, 2015.
46
75. Fanelli V, Morita Y, Cappello P, Ghazarian M, Sugumar B, Delsedime L, Batt J, Ranieri VM, Zhang H, Slutsky AS. Neuromuscular blocking agent cisatracurium attenuates lung injury by inhibition of nicotinic acetylcholine receptor-α1. Anesthesiology 124(1):132-40, 2016.
76. Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291(6):L1191-8, 2006.
77. Gao J, Huang T, Zhou LJ, Ge YL, Lin SY, Dai Y. Preconditioning effects of physiological cyclic stretch on pathologically mechanical stretch-induced alveolar epithelial cell apoptosis and barrier dysfunction. Biochem Biophys Res Commun 448(3):342-8, 2014.
78. Geiger RC, Kaufman CD, Lam AP, Budinger GR, Dean DA. Tubulin acetylation and histone deacetylase 6 activity in the lung under cyclic load. Am J Respir Cell Mol Biol 40(1):76-82, 2009.
79. Gu C, Liu M, Zhao T, Wang D, Wang Y. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respir Res 16:58, 2015.
80. Guo Y, Zhang W, Zheng L, Guo W, Zhang H, Li X. Impacts of dynamic mechanical stretch on the expression of plasminogen activator inhibitor-1 (PAI-1) in human A549 cell. Int J Clin Exp Pathol 9(6):5871-5881, 2016.
81. Gutierrez JA, Suzara VV, Dobbs LG. Continuous mechanical contraction modulates expression of alveolar epithelial cell phenotype. American Journal of Respiratory Cell and Molecular Biology 29:81-87, 2003.
82. Hammerschmidt S, Kuhn H, Grasenack T, Gessner C, Wirtz H. Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells. Am J Respir Cell Mol Biol 30(3):396-402, 2004.
83. Hammerschmidt S, Kuhn H, Sack U, Schlenska A, Gessner C, Gillissen A, Wirtz H. Mechanical stretch alters alveolar type II cell mediator release toward a proinflammatory pattern. Am J Respir Cell Mol Biol 33(2):203-210, 2005.
84. Harris C, Rushwan S, Wang W, Thorpe S, Thompson C, Peacock J, Knight M, Gooptu B, Greenough A. P07 Interleukin response to cyclical mechanical stretch with models of different neonatal ventilation modes. Archives of Disease in Childhood 102:A4, 2017.
85. Hokenson MA, Wang Y, Hawwa RL, Huang Z, Sharma S, Sanchez-Esteban J. Reduced IL-10 production in fetal type II epithelial cells exposed to mechanical stretch is mediated via activation of IL-6-SOCS3 signaling pathway. PLoS One 8(3):e59598, 2013.
86. Horie S, Ansari B, Masterson C, Devaney J, Scully M, O'Toole D, Laffey JG. Hypercapnic acidosis attenuates pulmonary epithelial stretch-induced injury via inhibition of the canonical NF-B pathway. Intensive Care Med Exp 4(1):8, 2016.
87. Hossain MM, Smith PG, Wu K, Jin JP. Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells. Biochemistry 45(51):15670-15683, 2006.
88. Huang Z, Wang Y, Nayak PS, Dammann CE, Sanchez-Esteban J. Stretch-induced fetal type II cell differentiation is mediated via ErbB1 - ErbB4 interactions. J Biol Chem 287(22):18091-18102, 2012.
89. Ito Y, Correll K, Schiel JA, Finigan JH, Prekeris R, Mason RJ. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling. Am J Physiol Lung Cell Mol Physiol 307(1):L94-105, 2014.
90. Jones JC, Lane K, Hopkinson SB, Lecuona E, Geiger RC, Dean DA, Correa-Meyer E, Gonzales M, Campbell K, Sznajder JI, Budinger S. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. J Cell Sci 118(Pt 12):2557-2566, 2005.
91. Karadottir H, Kulkarni NN, Gudjonsson T, Karason S, Gudmundsson GH. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells. PeerJ 3:e1483, 2015.
92. Kim KC, Zheng QX, Brody JS. Effect of floating a gel matrix on mucin release in cultured airway epithelial cells. J Cell Physiol 156(3):480-486, 1993.
93. Kuhn H, Petzold K, Hammerschmidt S, Wirtz H. Interaction of cyclic mechanical stretch and toll-like receptor 4-mediated innate immunity in rat alveolar type II cells. Respirology 19(1):67-73, 2014.
94. Lee HS, Wang Y, Maciejewski BS, Esho K, Fulton C, Sharma S, Sanchez-Esteban J. Interleukin-10 protects cultured fetal rat type II epithelial cells from injury induced by mechanical stretch. Am J Physiol Lung Cell Mol Physiol 294:L225–L232, 2008.
95. Makena PS, Luellen CL, Balazs L, Ghosh MC, Parthasarathi K, Waters CM, Sinclair SE. Preexposure to hyperoxia causes increased lung injury and epithelial apoptosis in mice ventilated with high tidal volumes. Am J Physiol Lung Cell Mol Physiol 299(5):L711-L719, 2010.
47
96. Mao P, Li J, Huang Y, Wu S, Pang X, He W, Liu X, Slutsky AS, Zhang H, Li Y. MicroRNA-19b mediates lung epithelial-mesenchymal transition via phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase in response to mechanical stretch. Am J Respir Cell Mol Biol 56(1):11-19, 2017. doi: 10.1165/rcmb.2015-0377OC.
97. McAdams RM, Mustafa SB, Shenberger JS, Dixon PS, Henson BM, DiGeronimo RJ. Cyclic stretch attenuates effects of hyperoxia on cell proliferation and viability in human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 291(2):L166-74, 2006.
98. Mohammed KA, Nasreen N, Tepper RS, Antony VB. Cyclic stretch induces PlGF expression in bronchial airway epithelial cells via nitric oxide release. Am J Physiol Lung Cell Mol Physiol 292(2):L559-L566, 2007.
99. Nayak PS, Wang Y, Najrana T, Priolo LM, Rios M, Shaw SK, Sanchez-Esteban J. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir Res 16:60, 2015.
100. Ning QM, Sun XN, Zhao XK. Role of mechanical stretching and lipopolysaccharide in early apoptosis and IL-8 of alveolar epithelial type II cells A549. Asian Pac J Trop Med 5(8):638-44, 2012.
101. Ning Q, Wang X. Role of Rel A and IB of nuclear factor B in the release of interleukin-8 by cyclic mechanical strain in human alveolar type II epithelial cells A549. Respirology 12(6):792-798, 2007.
102. Oudin S, Pugin J. Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch. Am J Respir Cell Mol Biol 27(1):107-14, 2002.
103. Papaiahgari S, Yerrapureddy A, Hassoun PM, Garcia JG, Birukov KG, Reddy SP. EGFR-activated signaling and actin remodeling regulate cyclic stretch-induced NRF2-ARE activation. Am J Respir Cell Mol Biol 36(3):304-312, 2007.
104. Pasternack M Jr, Liu X, Goodman RA, Rannels DE. Regulated stimulation of epithelial cell DNA synthesis by fibroblast-derived mediators. Am J Physiol 272(4 Pt 1):L619-L630, 1997.
105. Patel H, Eo S, Kwon S. Effects of diesel particulate matters on inflammatory responses in static and dynamic culture of human alveolar epithelial cells. Toxicol Lett 200(1-2):124-131, 2011.
106. Patel H, Kim H, Kwon S. Effect of dynamic environment on the interaction between nanoparticles and human airway epithelial cell monolayer. NSTI-Nanotech 3:565-568, 2010.
107. Patel HJ, Kwon S. Length-dependent effect of single-walled carbon nanotube exposure in a dynamic cell growth environment of human alveolar epithelial cells. J Expo Sci Environ Epidemiol 23(1):101-8, 2013.
108. Patel H, Kwon S. Multi-walled carbon nanotube-induced inflammatory response and oxidative stress in a dynamic cell growth environment. J Biol Eng 6(1):22, 2012.
109. Rentzsch I, Santos CL, Huhle R, Ferreira JMC, Koch T, Schnabel C, Koch E, Pelosi P, Rocco PRM, Gama de Abreu M. Variable stretch reduces the pro-inflammatory response of alveolar epithelial cells. PLoS One 12(8):e0182369, 2017.
110. Roan E, Waters CM, Teng B, Ghosh M, Schwingshackl A. The 2-pore domain potassium channel TREK-1 regulates stretch-induced detachment of alveolar epithelial cells. PLoS One 9(2):e89429, 2014.
111. Roan E, Wilhelm K, Bada A, Makena PS, Gorantla VK, Sinclair SE, Waters CM. Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 302(12):L1235-41, 2012.
112. Rose F, Zwick K, Ghofrani HA, Sibelius U, Seeger W, Walmrath D, Grimminger F. Prostacyclin enhances stretch-induced surfactant secretion in alveolar epithelial type II cells. Am J Respir Crit Care Med 160(3):846-851, 1999.
113. Sanchez-Esteban J, Cicchiello LA, Wang Y, Tsai S-W, Williams LK, Torday JS, Rubin LP. Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol 91(2):589-595, 2001.
114. Sanchez-Esteban J, Tsai SW, Sang J, Qin J, Torday JS, Rubin LP. Effects of mechanical forces on lung-specific gene expression. Am J Med Sci 316(3):200-204, 1998.
115. Sanchez-Esteban J, Wang Y, Filardo EJ, Rubin LP, Ingber DE. Integrins 1, 6, and 3 contribute to mechanical strain-induced differentiation of fetal lung type II epithelial cells via distinct mechanisms. Am J Physiol Lung Cell Mol Physiol 290(2):L343-L350, 2006.
116. Sanchez-Esteban J, Wang Y, Gruppuso PA, Rubin LP. Mechanical stretch induces fetal type II cell differentiation via an epidermal growth factor receptor-extracellular-regulated protein kinase signaling pathway. Am J Respir Cell Mol Biol 30:76–83, 2004.
117. Savla U, Olson LE, Waters CM. Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J Appl Physiol 96(2):566-574, 2004.
118. Savla U, Sporn PH, Waters CM. Cyclic stretch of airway epithelium inhibits prostanoid synthesis. Am J Physiol Lung Cell Mol Physiol 273:L1013-L1019, 1997.
48
119. Savla U, Waters CM. Mechanical strain inhibits repair of airway epithelium in vitro. Am J Physiol Lung Cell Mol Physiol 274:883-892, 1998.
120. Scott JE, Yang SY, Stanik E, Anderson JE. Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am J Respir Cell Mol Biol 8(3):258-265, 1993.
121. Sebag SC, Bastarache JA, Ware LB. Mechanical stretch inhibits lipopolysaccharide-induced keratinocyte-derived chemokine and tissue factor expression while increasing procoagulant activity in murine lung epithelial cells. J Biol Chem 288(11):7875-84, 2013.
122. Takawira D, Budinger GR, Hopkinson SB, Jones JC. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem 286(8):6301-6310, 2011.
123. Taylor W, Gokay KE, Capaccio C, Davis E, Glucksberg M, Dean DA. The effects of cyclic stretch on gene transfer in alveolar epithelial cells. Mol Ther 7(4):542-549, 2003.
124. Thomas RA, Norman JC, Huynh TT, Williams B, Bolton SJ, Wardlaw AJ. Mechanical stretch has contrasting effects on mediator release from bronchial epithelial cells, with a rho-kinase-dependent component to the mechanotransduction pathway. Respir Med 100(9):1588-1597, 2006.
125. Torday JS, Rehan VK. Stretch-stimulated surfactant synthesis is coordinated by the paracrine actions of PTHrP and leptin. Am J Physiol Lung Cell Mol Physiol 283(1):L130-L135, 2002.
126. Torday JS, Torres E, Rehan VK. The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med 22(3):189-207, 2003.
127. Valentine MS, Herbert JA, Link PA, Kamga Gninzeko FJ, Schneck MB, Shankar K, Nkwocha J, Reynolds AM, Heise RL. The Influence of Aging and Mechanical Stretch in Alveolar Epithelium ER Stress and Inflammation.
128. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 277:L167-L173, 1999.
129. Wang Y, Huang Z, Nayak PS, Sanchez-Esteban J. An experimental system to study mechanotransduction in fetal lung cells. J Vis Exp (60), 2012. pii: 3543.
130. Wang Y, Huang Z, Nayak PS, Matthews BD, Warburton D, Shi W, Sanchez-Esteban J. Strain-induced differentiation of fetal type II epithelial cells is mediated via integrin α6β1-ADAM17/TACE signaling pathway. J Biol Chem 288(35):25646-57, 2013.
131. Wang Y, Maciejewski BS, Drouillard D, Santos M, Hokenson MA, Hawwa RL, Huang Z, Sanchez-Esteban J. A role for caveolin-1 in mechanotransduction of fetal type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 298(6):L775-L783, 2010.
132. Wang Y, Maciejewski BS, Lee N, Silbert O, McKnight NL, Frangos JA, Sanchez-Esteban J. Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol 291(4):L820-L827, 2006.
133. Wang Y, Maciejewski BS, Weissmann G, Silbert O, Han H, Sanchez-Esteban J. DNA microarray reveals novel genes induced by mechanical forces in fetal lung type II epithelial cells. Pediatr Res 60(2):118-124, 2006.
134. Waters CM, Ridge KM, Sunio G, Venetsanou K, Sznajder JI. Mechanical stretching of alveolar epithelial cells increases Na+-K+-ATPase activity. J Appl Physiol 87(2):715-721, 1999.
135. Waters CM, Savla U. Keratinocyte growth factor accelerates wound closure in airway epithelium during cyclic mechanical strain. J Cell Physiol 181(3):424-432, 1999.
136. Wilhelm KR, Roan E, Ghosh MC, Parthasarathi K, Waters CM. Hyperoxia increases the elastic modulus of alveolar epithelial cells through Rho kinase. FEBS J 281(3):957-69, 2014.
137. Wu Q, Shu H, Yao S, Xiang H. Mechanical stretch induces pentraxin 3 release by alveolar epithelial cells in vitro. Med Sci Monit 15(5):BR135-BR140, 2009.
138. Yu Q, Li M. Effects of transient receptor potential canonical 1 (TRPC1) on the mechanical stretch-induced expression of airway remodeling-associated factors in human bronchial epithelioid cells. J Biomech 51:89-96, 2017.
139. Zhao T, Liu M, Gu C, Wang X, Wang Y. Activation of c-Src tyrosine kinase mediated the degradation of occludin in ventilator-induced lung injury. Respir Res 15:158, 2014.
PULMONARY SMOOTH MUSCLE CELLS
140. Bonacci JV, Harris T, Stewart AG. Impact of extracellular matrix and strain on proliferation of bovine airway smooth muscle. Clin Exp Pharmacol Physiol 30(5-6):324-328, 2003.
49
141. Fairbank NJ, Connolly SC, Mackinnon JD, Wehry K, Deng L, Maksym GN. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain. Am J Physiol Lung Cell Mol Physiol 295(3):L479-L488, 2008.
142. Hasaneen NA, Zucker S, Cao J, Chiarelli C, Panettieri RA, Foda HD. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs. FASEB J 19(11):1507-1509, 2005.
143. Hasaneen NA, Zucker S, Lin RZ, Vaday GG, Panettieri RA, Foda HD. Angiogenesis is induced by airway smooth muscle strain. Am J Physiol Lung Cell Mol Physiol 293(4):L1059-L1068, 2007.
144. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie JP, McVicker CG, Moir LM, Nguyen TT, Peng Q, Ramos-Barbon D, Stewart AG. Proliferative aspects of airway smooth muscle. Journal of Allergy and Clinical Immunology 114(2 Suppl):S2-S17, 2004.
145. Kumar A, Knox AJ, Boriek AM. CCAAT/enhancer-binding protein and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. J Biol Chem 278(21):18868-18876, 2003.
146. Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, and Black SM. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 289(2):L288-L289, 2005.
147. Mohamed JS, Boriek AM. Loss of desmin triggers mechanosensitivity and up-regulation of Ankrd1 expression through Akt-NF-B signaling pathway in smooth muscle cells. FASEB J 26(2):757-65, 2012.
148. Mohamed JS, Boriek AM. Stretch augments TGF-1 expression through RhoA/ROCK1/2, PTK, and PI3K in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 299(3):L413-L424, 2010.
149. Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem 285(38):29336-29347, 2010.
150. Ochoa CD, Baker H, Hasak S, Matyal R, Salam A, Hales CA, Hancock W, Quinn DA. Cyclic stretch affects pulmonary endothelial cell control of pulmonary smooth muscle cell growth. Am J Respir Cell Mol Biol 39(1):105-112, 2008.
151. Pasternyk SM, D'Antoni ML, Venkatesan N, Siddiqui S, Martin JG, Ludwig MS. Differential effects of extracellular matrix and mechanical strain on airway smooth muscle cells from ovalbumin- vs. saline-challenged Brown Norway rats. Respir Physiol Neurobiol 181(1):36-43, 2012.
152. Quinn TP, Schlueter M, Soifer SJ, Gutierrez JA. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 282(5):L897-L903, 2002.
153. Shah MR, Wedgwood S, Czech L, Kim GA, Lakshminrusimha S, Schumacker PT, Steinhorn RH, Farrow KN. Cyclic stretch induces inducible nitric oxide synthase and soluble guanylate cyclase in pulmonary artery smooth muscle cells. Int J Mol Sci 14(2):4334-48, 2013.
154. Smith PG, Deng L, Fredberg JJ, Maksym GN. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am J Physiol Lung Cell Mol Physiol 285(2):L456-L463, 2003.
155. Smith PG, Garcia R, Kogerman L. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells. Exp Cell Res 232(1):127-136, 1997.
156. Smith PG, Roy C, Dreger J, Brozovich F. Mechanical strain increases velocity and extent of shortening in cultured airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 277:L343-L348, 1999.
157. Smith PG, Roy C, Fisher S, Huang QQ, Brozovich F. Mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells. J Appl Physiol 89(5):2092-2098, 2000.
158. Smith PG, Roy C, Zhang YN, Chauduri S. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am J Respir Cell Mol Biol 28(4):436-442, 2003.
159. Smith PG, Tokui T, Ikebe M. Mechanical strain increases contractile enzyme activity in cultured airway smooth muscle cells. Am J Physiol 268(6 Pt 1):L999-L1005, 1995.
160. Trempus CS, Song W, Lazrak A, Yu Z, Creighton JR, Young BM, Heise RL, Yu YR, Ingram JL, Tighe RM, Matalon S, Garantziotis S. A novel role for primary cilia in airway remodeling. Am J Physiol Lung Cell Mol Physiol 313(2):L328-L338, 2017.
161. Vogel E, Britt RD, Faksh A, Prakash YS, Martin RJ, MacFarlane P, Pabelick C. Mechanical stretch induces remodeling of developing human airway smooth muscle. Am J Respir Crit Care Med 191:A5577, 2015.
50
162. Wang L, Liu HW, McNeill KD, Stelmack G, Scott JE, Halayko AJ. Mechanical strain inhibits airway smooth muscle gene transcription via protein kinase C signaling. American Journal of Respiratory Cell Molecular Biology 31:54-61, 2004.
163. Wedgwood S, Devol JM, Grobe A, Benavidez E, Azakie A, Fineman JR, Black SM. Fibroblast growth factor-2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 61(1):32-36, 2007.
164. Wedgwood S, Lakshminrusimha S, Schumacker PT, Steinhorn RH. Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Front Pharmacol 6:47, 2015.
OTHER PULMONARY CELLS
165. Ding N, Xiao H, Gao J, Xu LX, She SZ. Regulation of P38 and MKK6 on HMGB1 expression in alveolar macrophages induced by cyclic mechanical stretch. Sheng Li Xue Bao 61(1):49-55, 2009.
166. Geiger RC, Taylor W, Glucksberg MR, Dean DA. Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther 13(8):725-731, 2006.
167. Ludwig MS, Ftouhi-Paquin N, Huang W, Pagé N, Chakir J, Hamid Q. Mechanical strain enhances proteoglycan message in fibroblasts from asthmatic subjects. Clin Exp Allergy 34(6):926-930, 2004.
168. Ma D, Lu H, Xu L, Xu X, Xiao W. Mechanical loading promotes Lewis lung cancer cell growth through periostin. In Vitro Cell Dev Biol Anim 45(8):467-472, 2009.
169. Muratore CS, Nguyen HT, Ziegler MM, Wilson JM. Stretch-induced upregulation of VEGF gene expression in murine pulmonary culture: a role for angiogenesis in lung development. Journal of Pediatric Surgery 35(6):906-913, 2000.
170. Pan J, Copland I, Post M, Yeger H, Cutz E. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 290(1):L185-L193, 2006.
171. Patel S, Natarajan R, Heise RL. The importance of primary cilia in lung adenocarcinoma tumor progression [abstract]. D98. Novel Mechanisms of Tumor Promotion and Molecular Targeted Therapy in Lung Cancer May 1, 2012, A6525-A6525.
172. Pugin J, Dunn-Siegrist I, Dufour J, Tissières P, Charles PE, Comte R. Cyclic stretch of human lung cells induces an acidification and promotes bacterial growth. Am J Respir Cell Mol Biol 38(3):362-370, 2008.
173. Tepper RS, Ramchandani R, Argay E, Zhang L, Xue Z, Liu Y, Gunst SJ. Chronic strain alters the passive and contractile properties of rabbit airways. J Appl Physiol 98(5):1949-1954, 2005.
174. Torday JS, Rehan VK. Stretch-stimulated surfactant synthesis is coordinated by the paracrine actions of PTHrP and leptin. Am J Physiol Lung Cell Mol Physiol 283(1):L130-L135, 2002.
MENISCUS
1. Deschner J, Wypasek E, Ferretti M, Rath B, Anghelina M, Agarwal S. Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus. J Biomech 39(10):1796-1803, 2006.
2. Fermor B, Jeffcoat D, Hennerbichler A, Pisetsky DS, Weinberg JB, Guilak F. The effects of cyclic mechanical strain and tumor necrosis factor on the response of cells of the meniscus. Osteoarthritis Cartilage 12:956-962, 2004.
3. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol 290(6):C1610-15, 2006.
4. Upton ML, Hennerbichler A, Fermor B, Guilak F, Weinberg JB, Setton LA. Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res 47(4):207-214, 2006.
NEURONS, ASTROCYTES, & BRAIN
1. Albalawi F, Lu W, Beckel JM, Lim JC, McCaughey SA, Mitchell CH. The P2X7 receptor primes IL-1 and the NLRP3 inflammasome in astrocytes exposed to mechanical strain. Front Cell Neurosci 11:227, 2017.
2. Andrews AM, Lutton EM, Merkel SF, Razmpour R, Ramirez SH. Mechanical injury induces brain endothelial-derived microvesicle release: implications for cerebral vascular injury during traumatic brain injury. Front Cell Neurosci 10:43, 2016.
51
3. Arundine M, Aarts M, Lau A, Tymianski M. Vulnerability of central neurons to secondary insults after in vitro mechanical stretch. J Neurosci 24(37):8106-8123, 2004.
4. Arundine M, Chopra GK, Wrong A, Lei S, Aarts MM, MacDonald JF, Tymianski M. Enhanced vulnerability to NMDA toxicity in sublethal traumatic neuronal injury in vitro. Journal of Neurotrauma 20(12):1377-1395, 2003.
5. Berretta A, Gowing EK, Jasoni CL, Clarkson AN. Sonic hedgehog stimulates neurite outgrowth in a mechanical stretch model of reactive-astrogliosis. Sci Rep 6:21896, 2016.
6. Bhattacharya MR, Bautista DM, Wu K, Haeberle H, Lumpkin EA, Julius D. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A 105(50):20015-20020, 2008.
7. Gladman SJ, Huang W, Lim SN, Dyall SC, Boddy S, Kang JX, Knight MM, Priestley JV, Michael-Titus AT. Improved outcome after peripheral nerve injury in mice with increased levels of endogenous ω-3 polyunsaturated fatty acids. J Neurosci 32(2):563-571, 2012.
8. Gladman SJ, Ward RE, Michael-Titus AT, Knight MM, Priestley JV. The effect of mechanical strain or hypoxia on cell death in subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience 171(2):577-587, 2010.
9. Higgins S, Lee JS, Ha L, Lim JY. Inducing neurite outgrowth by mechanical cell stretch. Biores Open Access 2(3):212-6, 2013.
10. Lau A, Arundine M, Sun HS, Jones M, Tymianski M. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26(45):11540-11553, 2006.
11. Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes-hypothetical roles in CNS pathophysiology. Brain Research Reviews 48(3):488-508, 2005.
12. Ostrow LW, Suchyna TM, Sachs F. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs). Biochem Biophys Res Commun 410(1):81-6, 2011.
13. Parker K, Berretta A, Saenger S, Sivaramakrishnan M, Shirley SA, Metzger F, Clarkson AN. PEGylated insulin-like growth factor-I affords protection and facilitates recovery of lost functions post-focal ischemia. Sci Rep 7(1):241, 2017.
14. Rogers R, Dharsee M, Ackloo S, Flanagan JG. Proteomics analyses of activated human optic nerve head lamina cribrosa cells following biomechanical strain. Invest Ophthalmol Vis Sci 53(7):3806-16, 2012.
15. Rogers RS, Dharsee M, Ackloo S, Sivak JM, Flanagan JG. Proteomics analyses of human optic nerve head astrocytes following biomechanical strain. Mol Cell Proteomics 11(2):M111.012302, 2012.
16. Uchida K, Nakajima H, Takamura T, Furukawa S, Kobayashi S, Yayama T, Baba H. Gene expression profiles of neurotrophic factors in rat cultured spinal cord cells under cyclic tensile stress. Spine (Phila Pa 1976) 33(24):2596-2604, 2008.
SKELETAL MUSCLE
1. Anderson JE, Wozniak AC. Satellite cell activation on fibers: modeling events in vivo – an invited review. Can J Physiol Pharmacol 82:300-310, 2004.
2. Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Lainé J, Ben Yaou R, Bonne G, Coirault C. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127(Pt 13):2873-84, 2014.
3. Boonen KJ, Langelaan ML, Polak RB, van der Schaft DW, Baaijens FP, Post MJ. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J Biomech 43(8):1514-1521, 2010.
4. Cha MC, Purslow PP. The activities of MMP-9 and total gelatinase respond differently to substrate coating and cyclic mechanical stretching in fibroblasts and myoblasts. Cell Biol Int 34(6):587-591, 2010.
5. Chandran R, Knobloch TJ, Anghelina M, Agarwal S. Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation. Am J Physiol Cell Physiol 293(1):C267-C276, 2007.
6. Chen R, Feng L, Ruan M, Liu X, Adriouch S, Liao H. Mechanical-stretch of C2C12 myoblasts inhibits expression of Toll-like receptor 3 (TLR3) and of autoantigens associated with inflammatory myopathies. PLoS One 8(11):e79930, 2013.
7. Cheng CS, El-Abd Y, Bui K, Hyun YE, Hughes RH, Kraus WE, Truskey GA. Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro. Am J Physiol Cell Physiol 306(4):C385-95, 2014.
52
8. Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J 10(4):502-509, 1996.
9. Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Labbe K, Bao W, Petrof BJ. Endotoxin triggers nuclear factor-B-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med 174(6):646-653, 2006.
10. Dugan JM, Cartmell SH, Gough JE. Uniaxial cyclic strain of human adipose-derived mesenchymal stem cells and C2C12 myoblasts in coculture. J Tissue Eng 5:2041731414530138, 2014.
11. Ebihara S, Hussain SN, Danialou G, Cho WK, Gottfried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med 165(2):221-228, 2002.
12. Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch 447(2):247-253, 2003.
13. Hara M, Tabata K, Suzuki T, Do MK, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 302(12):C1741-50, 2012.
14. Haramizu S, Mori T, Yano M, Ota N, Hashizume K, Otsuka A, Hase T, Shimotoyodome A. Habitual exercise plus dietary supplementation with milk fat globule membrane improves muscle function deficits via neuromuscular development in senescence-accelerated mice. Springerplus 3:339, 2014.
15. Hicks MR, Cao TV, Campbell DH, Standley PR. Mechanical strain applied to human fibroblasts differentially regulates skeletal myoblast differentiation. J Appl Physiol (1985) 113(3):465-72, 2012.
16. Ho AM, Marker PC, Peng H, Quintero AJ, Kingsley DM, Huard J. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation. BMC Dev Biol 8:35, 2008.
17. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA. Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288(1):C185-C194, 2005.
18. Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380(Pt 3):795-804, 2004.
19. Hua W, Zhang M, Wang Y, Yu L, Zhao T, Qiu X, Wang L. Mechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts. Mol Med Rep 14(6):5084-5092, 2016.
20. Hubatsch DA, Jasmin BJ. Mechanical stimulation increases expression of acetylcholinesterase in cultured myotubes. Am J Physiol Cell Physiol 273:C2002-C2009, 1997.
21. Huntsman HD, Zachwieja N, Zou K, Ripchik P, Valero MC, De Lisio M, Boppart MD. Mesenchymal stem cells contribute to vascular growth in skeletal muscle in response to eccentric exercise. Am J Physiol Heart Circ Physiol 304(1):H72-81, 2013.
22. Iwanuma O, Abe S, Hiroki E, Kado S, Sakiyama K, Usami A, Ide Y. Effects of mechanical stretching on caspase and IGF-1 expression during the proliferation process of myoblasts. Zoolog Sci 25(3):242-247, 2008.
23. Juffer P, Bakker AD, Klein-Nulend J, Jaspers RT. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production. Cell Biochem Biophys 69(3):411-9, 2014.
24. Juffer P, Jaspers RT, Klein-Nulend J, Bakker AD. Mechanically loaded myotubes affect osteoclast formation. Calcif Tissue Int 94(3):319-26, 2014.
25. Kook SH, Lee HJ, Chung WT, Hwang IH, Lee SA, Kim BS, Lee JC. Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells 25(4):479-486, 2008.
26. Kumar A, Murphy R, Robinson P, Wei L, Boriek AM. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-B transcription factor. FASEB J 18(13):1524-1535, 2004.
27. Kurokawa K, Abe S, Sakiyama K, Takeda T, Ide Y, Ishigami K. Effects of stretching stimulation with different rates on the expression of MyHC mRNA in mouse cultured myoblasts. Biomed Res 28(1):25-31, 2007.
28. Liu J, Liu J, Mao J, Yuan X, Lin Z, Li Y. Caspase-3-mediated cyclic stretch-induced myoblast apoptosis via a Fas/FasL-independent signaling pathway during myogenesis. J Cell Biochem 107(4):834-844, 2009.
53
29. Ma Y, Fu S, Lu L, Wang X. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways. Mol Cell Endocrinol 450:83-93, 2017.
30. Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL. HIF-1 and HIF-2 play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583(Pt 2):753-766, 2007.
31. Milkiewicz M, Mohammadzadeh F, Ispanovic E, Gee E, Haas TL. Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. J Cell Biochem 100(3):750-761, 2007.
32. Mitsumoto Y, Downey GP, Klip A. Stimulation of glucose transport in L6 muscle cells by long-term intermittent stretch-relaxation. FEBS Letters 301(1):94-98, 1992.
33. Miyazaki M, Esser KA. REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch. Am J Physiol Cell Physiol 296(3):C583-C592, 2009.
34. Nguyen HX, Lusis AJ, Tidball JG. Null mutation of myeloperoxidase in mice prevents mechanical activation of neutrophil lysis of muscle cell membranes in vitro and in vivo. J Physiol 565(Pt 2):403-13, 2005.
35. Pardo PS, Mohamed JS, Lopez MA, Boriek AM. Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem 286(4):2559-2566, 2011.
36. Peterson JM, Pizza FX. Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Physiol 106:130-137, 2009.
37. Sampaolesi M, Yoshida T, Iwata Y, Hanada H, Shigekawa M. Stretch-induced cell damage in sarcoglycan-deficient myotubes. Pflügers Arch - Eur J Physiol 442:161–170, 2001.
38. Schilder RJ, Kimball SR, Jefferson LS. Cell-autonomous regulation of fast troponin T pre-mRNA alternative splicing in response to mechanical stretch. Am J Physiol Cell Physiol 303(3):C298-307, 2012.
39. Soltow QA, Zeanah EH, Lira VA, Criswell DS. Cessation of cyclic stretch induces atrophy of C2C12 myotubes. Biochem Biophys Res Commun 434(2):316-321, 2013.
40. Tatsumi R, Hattori A, Allen RE, Ikeuchi Y, Ito T. Mechanical stretch-induced activation of skeletal muscle satellite cells is dependent on nitric oxide production in vitro. Animal Sci J 73(3):235-239, 2002.
41. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13(8):2909-2918, 2002.
42. Tatsumi R, Mitsuhashi K, Ashida K, Haruno A, Hattori A, Ikeuchi Y, Allen RE. Comparative analysis of mechanical stretch-induced activation activity of back and leg muscle satellite cells in vitro. Animal Sci J 75(4):345-351, 2004.
43. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107-114, 2001.
44. Tsivitse SK, Mylona E, Peterson JM, Gunning WT, Pizza FX. Mechanical loading and injury induce human myotubes to release neutrophil chemoattractants. Am J Physiol Cell Physiol 288(3):C721-C729, 2005.
45. Vogel J, Kruse C, Zhang M, Schröder K. Nox4 supports proper capillary growth in exercise and retina neo-vascularization. J Physiol 593(9):2145-54, 2015.
46. Wozniak AC, Anderson JE. The dynamics of the nitric oxide release-transient from stretched muscle cells. Int J Biochem Cell Biol 41(3):625-631, 2009.
47. Wozniak AC, Anderson JE. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236(1):240-250, 2007.
48. Wozniak AC, Pilipowicz O, Yablonka RZ, Greenway S, Craven S, Scott E, Anderson JE. C-Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51(11):1437-1445, 2003.
49. Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K, Allen RE. Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell Biol 40(10):2183-2191, 2008.
50. Yamashita-Goto K, Ohira Y, Okuyama R, Sugiyama H, Honda M, Sugiura T, Yamada S, Akema T, Yoshioka T. Heat stress facilitates stretch-induced hypertrophy of cultured rat skeletal muscle cells. In: Proceedings of "Life in space for life on Earth". 8th European Symposium on Life Sciences Research in Space. 23rd Annual International Gravitational Physiology Meeting, 2-7 June 2002, Karolinska Institutet, Stockholm, Sweden. Ed.: B. Warmbein. ESA SP-501, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-811-5, 2002, p. 113-114.
54
51. Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KM. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J Bone Miner Res 25(5):1128-1137, 2010.
52. Yuan X, Luo S, Lin Z, Wu Y. Cyclic stretch translocates the 2-subunit of the Na pump to plasma membrane in skeletal muscle cells in vitro. Biochem Biophys Res Commun 348(2):750-757, 2006.
53. Zhang H, Anderson JE. Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). J Exp Biol 217(Pt 11):1910-7, 2014.
54. Zhang SJ, Truskey GA, Kraus WE. Effect of cyclic stretch on 1D integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 292:C2057–C2069, 2007.
SMOOTH MUSCLE CELLS
BLADDER SMOOTH MUSCLE CELLS
See page 1
CARDIOVASCULAR SMOOTH MUSCLE CELLS
See page 17
PULMONARY SMOOTH MUSCLE CELLS
See page 48
UTERINE/MYOMETRIAL SMOOTH MUSCLE CELLS
See page 62
OTHER SMOOTH MUSCLE CELLS
1. Ark M, Sevieux N, Hornick C, He Z, Songu-Mize E. Acute stretch translocates Na-pump -1 subunit to plasma membrane in smooth muscle cells [abstract]. FASEB J 16:A466, 349.9, 2002.
2. Choi K, Mollapour E, Shears SB. Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cellular Signalling 17(12):1533-1541, 2005.
3. Hoffmann S, Dalrymple A, Tribe R, Songu-Mize E. Stretch regulates expression of TrpC4 in smooth muscle cells [abstract]. FASEB J 18:A702, 459.11, 2004.
4. Hoffmann SE, Zhang Z, Songu-Mize E. Effect of cyclic stretch on TRP C expression and calcium mobilization [abstract]. Experimental Biology, San Diego, CA, April 2005.
5. Li F, Lin YM, Sarna SK, Shi XZ. Cellular mechanism of mechanotranscription in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 303(5):G646-56, 2012.
6. Lin YM, Li F, Shi XZ. Mechanical stress is a pro-inflammatory stimulus in the gut: in vitro, in vivo and ex vivo evidence. PLoS One 9(9):e106242, 2014.
7. Sevieux N, Alam J, Songu-Mize E. Na-pump activity and regulation by stretch: a time course study [abstract]. FASEB J 15:A444, 401.6, 2001.
8. Shi XZ, Lin YM, Powell DW, Sarna SK. Pathophysiology of motility dysfunction in bowel obstruction: role of stretch-induced COX-2. Am J Physiol Gastrointest Liver Physiol 300(1):G99-G108, 2011.
9. Wehner S, Buchholz BM, Schuchtrup S, Rocke A, Schaefer N, Lysson M, Hirner A, Kalff JC. Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. Am J Physiol Gastrointest Liver Physiol 299(5):G1187-G1197, 2010.
10. Yang S, Dong F, Li D, Sun H, Wu B, Sun T, Wang Y, Shen P, Ji F, Zhou D. Persistent distention of colon damages interstitial cells of Cajal through Ca2+ -ERK-AP-1-miR-34c-SCF deregulation. J Cell Mol Med 21(9):1881-1892, 2017.
STEM & PROGENITOR CELLS
1. Acosta Jr FL, Pham M, Safai Y, Buser Z. Improving bone formation in osteoporosis through in vitro mechanical stimulation compared to biochemical stimuli. Journal of Nature and Science 1(4):63, 2015.
2. Ambrosio F, Ferrari RJ, Distefano G, Plassmeyer JM, Carvell GE, Deasy BM, Boninger ML, Fitzgerald GK, Huard J. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle. Tissue Eng Part A 16(3):839-849, 2010.
55
3. Bolno PB, Wechsler AS, Ranggappa S, Kresh JY. Cyclic strain of adult stem cells modulates matrix metalloproteinase activity: mechanism for promoting cell-based cardiac remodeling [abstract]. The Journal of Heart and Lung Transplantation 24(2 Suppl):S83, 2005.
4. Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther 6:89, 2015.
5. Brown JP, Finley VG, Kuo CK. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech 47(1):214-22, 2014.
6. Case N, Thomas J, Sen B, Styner M, Xie Z, Galior K, Rubin J. Mechanical regulation of glycogen synthase kinase 3β (GSK3β) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein. J Biol Chem 286(45):39450-39456, 2011.
7. Case N, Xie Z, Sen B, Styner M, Zou M, O'Conor C, Horowitz M, Rubin J. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J Orthop Res 28(11):1531-1538, 2010.
8. Cassino TR, Drowley L, Okada M, Beckman SA, Keller B, Tobita K, Leduc PR, Huard J. Mechanical loading of stem cells for improvement of transplantation outcome in a model of acute myocardial infarction: the role of loading history. Tissue Eng Part A 18(11-12):1101-8, 2012.
9. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011.
10. Chen QZ, Ishii H, Thouas GA, Lyon AR, Wright JS, Blaker JJ, Chrzanowski W, Boccaccini AR, Ali NN, Knowles JC, Harding SE. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31(14):3885-3893, 2010.
11. Cherbuin T, Movahednia MM, Toh WS, Cao T. Investigation of human embryonic stem cell-derived keratinocytes as an in vitro research model for mechanical stress dynamic response. Stem Cell Rev 11(3):460-73, 2015.
12. Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from skeletal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
13. Collins JM, Goldspink PH, Russell B. Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J Mol Cell Cardiol 49(6):1042-1045, 2010.
14. David V, Marin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A. Mechanical loading down-regulates peroxisome proliferator-activated receptor in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148(5):2553-2562, 2007.
15. de Jonge N, Muylaert DE, Fioretta ES, Baaijens FP, Fledderus JO, Verhaar MC, Bouten CV. Matrix production and organization by endothelial colony forming cells in mechanically strained engineered tissue constructs. PLoS One 8(9):e73161, 2013.
16. De Lisio M, Jensen T, Sukiennik RA, Huntsman HD, Boppart MD. Substrate and strain alter the muscle-derived mesenchymal stem cell secretome to promote myogenesis. Stem Cell Res Ther 5(3):74, 2014.
17. Doroudian G, Curtis MW, Gang A, Russell B. Cyclic strain dominates over microtopography in regulating cytoskeletal and focal adhesion remodeling of human mesenchymal stem cells. Biochem Biophys Res Commun 430(3):1040-6, 2013.
18. Dugan JM, Cartmell SH, Gough JE. Uniaxial cyclic strain of human adipose-derived mesenchymal stem cells and C2C12 myoblasts in coculture. J Tissue Eng 5:2041731414530138, 2014.
19. Földes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J, Schneider MD, Ali NN, Harding SE. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol 50(2):367-376, 2011.
20. French KM, Maxwell JT, Bhutani S, Ghosh-Choudhary S, Fierro MJ, Johnson TD, Christman KL, Taylor WR, Davis ME. Fibronectin and cyclic strain improve cardiac progenitor cell regenerative potential in vitro. Stem Cells Int 2016:8364382, 2016.
21. Girão-Silva T, Bassaneze V, Campos LC, Barauna VG, Dallan LA, Krieger JE, Miyakawa AA. Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. Biomed Eng Online 13:54, 2014.
56
22. Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P, Sinha S. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet 49(1):97-109, 2017. doi: 10.1038/ng.3723. Epub 2016 Nov 28.
23. Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22(6):1635-1648, 2008.
24. Hamilton DW, Maul TM, Vorp DA. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Engineering 10(3-4):361-369, 2004.
25. Harada M, Osuga Y, Hirota Y, Koga K, Morimoto C, Hirata T, Yoshino O, Tsutsumi O, Yano T, Taketani Y. Mechanical stretch stimulates interleukin-8 production in endometrial stromal cells: possible implications in endometrium-related events. J Clin Endocrinol Metab 90(2):1144-8, 2005.
26. Harada M, Osuga Y, Takemura Y, Yoshino O, Koga K, Hirota Y, Hirata T, Morimoto C, Yano T, Taketani Y. Mechanical stretch upregulates insulin-like growth factor binding protein-1 (IGFBP-1) secretion from decidualized endometrial stromal cells. Am J Physiol Endocrinol Metab 290(2):E268-72, 2006.
27. Hegarty PK, Watson RW, Coffey RN, Webber MM, Fitzpatrick JM. Effects of cyclic stretch on prostatic cells in culture. J Urol 168(5):2291-2295, 2002.
28. Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108(6):1263-1273, 2009.
29. Huri PY, Wang A, Spector AA, Grayson WL. Multistage adipose-derived stem cell myogenesis: an experimental and modeling study. Cellular and Molecular Bioengineering 7(4):497-509, 2014.
30. Izumi G, Koga K, Nagai M, Urata Y, Takamura M, Harada M, Hirata T, Hirota Y, Ogawa K, Inoue S, Fujii T, Osuga Y. Cyclic stretch augments production of neutrophil chemokines, matrix metalloproteinases, and activin A in human endometrial stromal cells. Am J Reprod Immunol 73(6):501-6, 2015.
31. Jagielska A, Lowe AL, Makhija E, Wroblewska L, Guck J, Franklin RJM, Shivashankar GV, Van Vliet KJ. Mechanical strain promotes oligodendrocyte differentiation by global changes of gene expression. Front Cell Neurosci 11:93, 2017.
32. Jakkaraju S, Zhe X, Pan D, Choudhury R, Schuger L. TIPs are tension-responsive proteins involved in myogenic versus adipogenic differentiation. Developmental Cell 9(1):39-49, 2005.
33. Jiang Y, Wang Y, Tang G. Cyclic tensile strain promotes the osteogenic differentiation of a bone marrow stromal cell and vascular endothelial cell co-culture system. Arch Biochem Biophys 607:37-43, 2016.
34. Kang MN, Yoon HH, Seo YK, Park JK. Human umbilical cord-derived mesenchymal stem cells differentiate into ligament-like cells with mechanical stimulation in various media. Tissue Engineering and Regenerative Medicine 9(4):185-193, 2012.
35. Kang MN, Yoon HH, Seo YK, Park JK. Effect of mechanical stimulation on the differentiation of cord stem cells. Connect Tissue Res 53(2):149-159, 2012.
36. Kim YM, Kang YG, Park SH, Han MK, Kim JH, Shin JW, Shin JW. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells. Stem Cell Res Ther 8(1):139, 2017.
37. Kmiecik G, Spoldi V, Silini A, Parolini O. Current view on osteogenic differentiation potential of mesenchymal stromal cells derived from placental tissues. Stem Cell Rev 11(4):570-85, 2015.
38. Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23(3):219-225, 2005.
39. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH, Chester AH. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71(3):548-556, 2006.
40. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1):21-34, 2006.
41. Lee EK, Lee JS, Park HS, Kim CH, Gin YJ, Son Y. Cyclic stretch stimulates cell proliferation of human mesenchymal stem cells but do not induce their apoptosis and differentiation. Tissue Engineering and Regenerative Medicine 2(1):29-33, 2005.
42. Lee EL, Watson KC, von Recum HA. Contractile protein and extracellular matrix secretion of cell monolayer sheets following cyclic stretch. Cardiovascular Engineering and Technology 3(3):302-310, 2012.
43. Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6(4):265-273, 2007.
57
44. Li M, Li X, Meikle MC, Islam I, Cao T. Short periods of cyclic mechanical strain enhance triple-supplement directed osteogenesis and bone nodule formation by human embryonic stem cells in vitro. Tissue Eng Part A 19(19-20):2130-7, 2013.
45. Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, Yu B. Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Biomed Res Int 2015:873251, 2015.
46. Link PA, Farkas D, Farkas L, Heise RL. Pulmonary endothelial progenitor cells demonstrate phenotypic shift from altered substrate mechanics. American Journal of Respiratory and Critical Care Medicine 195:A4309, 2017.
47. Liu J, Li Q, Liu S, Gao J, Qin W, Song Y, Jin Z. Periodontal ligament stem cells in the periodontitis microenvironment are sensitive to static mechanical strain. Stem Cells Int 2017:1380851, 2017.
48. Liu W, Yin L, Yan X, Cui J, Liu W, Rao Y, Sun M, Wei Q, Chen F. Directing the differentiation of parthenogenetic stem cells into tenocytes for tissue-engineered tendon regeneration. Stem Cells Transl Med 6(1):196-208, 2017.
49. Lohberger B, Kaltenegger H, Stuendl N, Payer M, Rinner B, Leithner A. Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in human intraoral mesenchymal stromal and progenitor cells. Biomed Res Int 2014:189516, 2014.
50. MacQuarrie RA, Fang Chen Y, Coles C, Anderson GI. Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J Biomed Mater Res B Appl Biomater 69(1):104-112, 2004.
51. Mauretti A, Bax NA, van Marion MH, Goumans MJ, Sahlgren C, Bouten CV. Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integr Biol (Camb) 8(9):991-1001, 2016.
52. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.
53. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88(3):359-68, 2004.
54. Payne TR, Oshima H, Okada M, Momoi N, Tobita K, Keller BB, Peng H, Huard J. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50(17):1677-1684, 2007.
55. Rahnert J, Fan X, Case N, Murphy TC, Grassi F, Sen B, Rubin J. The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells. Bone 43(1):48-54, 2008.
56. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012.
57. Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33(7):2148-57, 2015.
58. Rubin J, Fan X, Biskobing DM, Taylor WR, Rubin CT. Osteoclastogenesis is repressed by mechanical strain in an in vitro model. J Orthop Res 17(5):639-645, 1999.
59. Rubin J, Murphy T, Nanes MS, Fan X. Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol Cell Physiol 278(6):C1126-C1132, 2000.
60. Rubin J, Murphy TC, Fan X, Goldschmidt M, Taylor WR. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J Bone Miner Res 17(8):1452-1460, 2002.
61. Rubin J, Murphy TC, Rahnert J, Song H, Nanes MS, Greenfield EM, Jo H, Fan X. Mechanical inhibition of RANKL expression is regulated by H-Ras-GTPase. J Biol Chem 281(3):1412-1418, 2006.
62. Rubin J, Murphy TC, Zhu L, Roy E, Nanes MS, Fan X. Mechanical strain differentially regulates endothelial nitric-oxide synthase and receptor activator of nuclear B ligand expression via ERK1/2 MAPK. J Biol Chem 278(36):34018-34025, 2003.
63. Saha S, Ji L, de Pablo JJ, Palecek SP. Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol 206(1):126-37, 2006.
64. Saha S, Ji L, de Pablo JJ, Palecek SP. TGFβ/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J 94(10):4123-4133, 2008.
65. Scharenberg MA, Pippenger BE, Sack R, Zingg D, Ferralli J, Schenk S, Martin I, Chiquet-Ehrismann R. TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. J Cell Sci 127(Pt 5):1079-91, 2014.
58
66. Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182-1184, 2006.
67. Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable -catenin signal. Endocrinology 149(12):6065-6075, 2008.
68. Sen B, Xie Z, Case N, Thompson WR, Uzer G, Styner M, Rubin J. mTORC2 regulates mechanically induced cytoskeletal reorganization and lineage selection in marrow-derived mesenchymal stem cells. J Bone Miner Res 29(1):78-89, 2014.
69. Shen T, Qiu L, Chang H, Yang Y, Jian C, Xiong J, Zhou J, Dong S. Cyclic tension promotes osteogenic differentiation in human periodontal ligament stem cells. Int J Clin Exp Pathol 7(11):7872-80, 2014.
70. Shi GX, Zheng XF, Zhu C, Li B, Wang YR, Jiang SD, Jiang LS. Evidence of the role of R-spondin 1 and its receptor Lgr4 in the transmission of mechanical stimuli to biological signals for bone formation. Int J Mol Sci 18(3), 2017. pii: E564.
71. Shradhanjali A, Riehl BD, Lee JS, Ha L, Lim JY. Enhanced cardiomyogenic induction of mouse pluripotent cells by cyclic mechanical stretch. Biochem Biophys Res Commun 488(4):590-595, 2017.
72. Simionescu A, Tedder ME, Chuang T, Simionescu DT. Lectin and antibody-based histochemical techniques for cardiovascular tissue engineering. Journal of Histotechnology 34(1):20-28, 2011.
73. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. Journal of Biomechanics 36(8):1087-1096, 2003.
74. Song F, Jiang D, Wang T, Wang Y, Chen F, Xu G, Kang Y, Zhang Y. Mechanical loading improves tendon-bone healing in a rabbit anterior cruciate ligament reconstruction model by promoting proliferation and matrix formation of mesenchymal stem cells and tendon cells. Cell Physiol Biochem 41(3):875-889, 2017.
75. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.
76. Sun L, Qu L, Zhu R, Li H, Xue Y, Liu X, Fan J, Fan H. Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells International 2016:9842075, 2016.
77. Sun X, Nunes SS. Bioengineering approaches to mature human pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol 5:19, 2017.
78. Tan J, Xu X, Tong Z, Lin J, Yu Q, Lin Y, Kuang W. Decreased osteogenesis of adult mesenchymal stem cells by reactive oxygen species under cyclic stretch: a possible mechanism of age related osteoporosis. Bone Res 3:15003, 2015.
79. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 4:6614, 2014.
80. Tchao J, Kim JJ, Lin B, Salama G, Lo CW, Yang L, Tobita K. Engineered human muscle tissue from skeletal muscle derived stem cells and induced pluripotent stem cell derived cardiac cells. Int J Tissue Eng 2013:198762, 2013.
81. Thayer P, Tong E, Butler-Abisrror N, Goldstein A. Influence of sparse electrospun fibers on the differentiation of mesenchymal stem cells in collagen gels [abstract]. Tissue Engineering Part A 20:S18, 2014.
82. Throm Quinlan AM, Sierad LN, Capulli AK, Firstenberg LE, Billiar KL. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8):e23272, 2011.
83. Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, Miller S, Bas G, Styner M, Rubin CT, Judex S, Burridge K, Rubin J. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells 33(6):2063-76, 2015.
84. Valero MC, Huntsman HD, Liu J, Zou K, Boppart MD. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle. PLoS One 7(1):e29760, 2012.
85. Wall ME, Rachlin A, Otey CA, Loboa EG. Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain. American Journal of Physiology: Cell Physiology 293(5):C1532-C1538, 2007.
86. Wang J, Wang CD, Zhang N, Tong WX, Zhang YF, Shan SZ, Zhang XL, Li QF. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 7:e2221, 2016.
59
87. Ward DF, Salasznyk RM, Klees RF, Backiel J, Agius P, Bennett K, Boskey A, Plopper GE. Gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells and Development 16:467–479, 2007.
88. Wei FL, Wang JH, Ding G, Yang SY, Li Y, Hu YJ, Wang SL. Mechanical force-induced specific microRNA expression in human periodontal ligament stem cells. Cells Tissues Organs 199(5-6):353-63, 2014.
89. Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 78(3):358-63, 2009.
90. Wozniak M, Fausto A, Carron CP, Meyer DM, Hruska KA. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of V3-integrin expression. J Bone Miner Res 15(9):1731-1745, 2000.
91. Wu Y, Zhang P, Dai Q, Fu R, Yang X, Fang B, Jiang L. Osteoclastogenesis accompanying early osteoblastic differentiation of BMSCs promoted by mechanical stretch. Biomedical Reports 1(3):474-78, 2013.
92. Wu Y, Zhang P, Dai Q, Yang X, Fu R, Jiang L, Fang B. Effect of mechanical stretch on the proliferation and differentiation of BMSCs from ovariectomized rats. Mol Cell Biochem 382(1-2):273-82, 2013.
93. Wu Y, Zhang X, Zhang P, Fang B, Jiang L. Intermittent traction stretch promotes the osteoblastic differentiation of bone mesenchymal stem cells by the ERK1/2-activated Cbfa1 pathway. Connect Tissue Res 53(6):451-9, 2012.
94. Xiao WL, Zhang DZ, Fan CH, Yu BJ. Intermittent stretching and osteogenic differentiation of bone marrow derived mesenchymal stem cells via the p38MAPK-osterix signaling pathway. Cell Physiol Biochem 36(3):1015-25, 2015.
95. Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34(37):9295-306, 2013.
96. Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KM. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J Bone Miner Res 25(5):1128-1137, 2010.
SYNOVIAL
1. Bader RA, Wagoner KL. Modulation of the response of rheumatoid arthritis synovial fibroblasts to proinflammatory stimulants with cyclic tensile strain. Cytokine 51(1):35-41, 2010.
2. Hirata H, Nagakura T, Tsujii M, Morita A, Fujisawa K, Uchida A. The relationship of VEGF and PGE2 expression to extracellular matrix remodelling of the tenosynovium in the carpal tunnel syndrome. J Pathol 204(5):605-612, 2004.
3. Lange F, Hartl S, Ungethuem U, Kuban RJ, Hammerschmidt S, Faber S, Morawietz L, Wirtz H, Emmrich F, Krenn V, Sack U. Anti-TNF effects on destructive fibroblasts depend on mechanical stress. Scand J Immunol 64(5):544-553, 2006.
4. Momberger TS, Levick JR, Mason RM. Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biology 24(8):510-519, 2005.
5. Momberger TS, Levick JR, Mason RM. Mechanosensitive synoviocytes: a Ca2+ -PKC-MAP kinase pathway contributes to stretch-induced hyaluronan synthesis in vitro. Matrix Biol 25(5):306-316, 2006.
6. Sambajon VV, Cillo JE, Gassner RJ, Buckley MJ. The effects of mechanical strain on synovial fibroblasts. Journal of Oral and Maxillofacial Surgery 61(6):707-712, 2003.
7. Thaler JD, Achari Y, Lu T, Shrive NG, Hart DA. Estrogen receptor and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading. Biology of Sex Differences 5:14, 2014.
8. Tsujii M, Hirata H, Yoshida T, Imanaka-Yoshida K, Morita A, Uchida A. Involvement of tenascin-C and PG-M/versican in flexor tenosynovial pathology of idiopathic carpal tunnel syndrome. Histol Histopathol 21(5):511-518, 2006.
TENDON
1. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.
60
2. Almekinders LC, Banes AJ, Ballenger CA. Effects of repetitive motion on human fibroblasts. Med Sci Sports Exerc 25(5):603-607, 1993.
3. Andersson G, Backman L. 13 Fibrotic regulators Ccn1 and Ccn2 respond to mechanical loading of tendon cells. Br J Sports Med 48:A8-A9, 2014.
4. Archambault J, Tsuzaki M, Herzog W, Banes AJ. Stretch and interleukin-1 induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research 20(1):36-39, 2002.
5. Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P. Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. Journal of Orthopaedic Research 20(5):947-952, 2002.
6. Backman LJ, Fong G, Andersson G, Scott A, Danielson P. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation. PLoS One 6(11):e27209, 2011.
7. Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J Cell Sci 75:35-42, 1985.
8. Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage 7(1):141-153, 1999.
9. Banes AJ, Tsuzaki M, Lawrence WT, Ralphs J, Benjamin M, Pederson D, Brown T. Gap junction connexin expression is upregulated by cyclic mechanical load in avian tendon cells. Biorheology 32(2):177, 1995.
10. Banes AJ, Tsuzaki M, Peiqi H, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T. PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. Journal of Biomechanics 28(12):1505-1513, 1995.
11. Banes AJ, Tsuzaki M, Yang X, Faber J, Brown T, Boitano S. Uniform biaxial strain stimulates immediate and downstream responses in tendon cells. Annals of Biomedical Engineering 25(1):S77, 1997.
12. Banes AJ, Weinhold P, Yang X, Tsuzaki M, Bynum D, Bottlang M, Brown T. Gap junctions regulate responses of tendon cells ex vivo to mechanical loading. Clin Orthop Relat Res 367 Suppl:S356-S370, 1999.
13. Brown JP, Finley VG, Kuo CK. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech 47(1):214-22, 2014.
14. Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther 6:89, 2015.
15. Cao TV, Hicks MR, Campbell D, Standley PR. Dosed myofascial release in three-dimensional bioengineered tendons: effects on human fibroblast hyperplasia, hypertrophy, and cytokine secretion. J Manipulative Physiol Ther 36(8):513-21, 2013.
16. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR. Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72-82, 2015.
17. Chen CH, Marymont JV, Huang MH, Geyer M, Luo ZP, Liu X. Mechanical strain promotes fibroblast gene expression in presence of corticosteroid. Connect Tissue Res 48(2):65-9, 2007.
18. Chen G, Jiang H, Tian X, Tang J, Bai X, Zhang Z, Wang L. Mechanical loading modulates heterotopic ossification in calcific tendinopathy through the mTORC1 signaling pathway. Mol Med Rep 16(5):5901-5907, 2017. doi: 10.3892/mmr.2017.7380.
19. Elfervig M, Archambault J, Herzog W, Bynum D, Banes AJ. Mechanical stretching induces increased intracellular Ca2+ in human tendon cells [abstract]. Transactions of the 47th Annual Meeting of the Orthopaedic Research Society 26:566, 2001.
20. Elfervig MK, Yang X, Tsuzaki M, Banes AJ. Mechanical strain and norepinephrine synergize to increase Ca2+ signaling and cell coupling in tendon cells [abstract]. Transactions of the 48th Annual Meeting of the Orthopaedic Research Society 27:596, 2002.
21. Fong G, Backman LJ, Hart DA, Danielson P, McCormack B, Scott A. Substance P enhances collagen remodeling and MMP-3 expression by human tenocytes. J Orthop Res 31(1):91-8, 2013.
22. Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.
23. Gilbert JA, Weinhold PS, Banes AJ, Link GW, Jones GL. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. Journal of Biomechanics 27(9):1169-1177, 1994.
61
24. Hirata H, Nagakura T, Tsujii M, Morita A, Fujisawa K, Uchida A. The relationship of VEGF and PGE2 expression to extracellular matrix remodelling of the tenosynovium in the carpal tunnel syndrome. J Pathol 204(5):605-612, 2004.
25. Huisman E, Lu A, McCormack RG, Scott A. Enhanced collagen type I synthesis by human tenocytes subjected to periodic in vitro mechanical stimulation. BMC Musculoskelet Disord 15:386, 2014.
26. Huisman E, Lu A, McCormack R, Scott A. Enhanced collagen type I synthesis of tenocytes by periodic in vitro mechanical stimulation. Br J Sports Med 48:A28, 2014.
27. Jones E, Legerlotz K, Riley G. Mechanical regulation of integrins in human tenocytes in collagen and fibrin matrices. Bone Joint J 96-B(Supp 11):161, 2014.
28. Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. Biochim Biophys Acta 1833(12):2596-2607, 2013.
29. Kayama T, Mori M, Ito Y, Matsushima T, Nakamichi R, Suzuki H, Ichinose S, Saito M, Marumo K, Asahara H. Gtf2ird1-dependent Mohawk expression regulates mechanosensing properties of the tendon. Mol Cell Biol 36(8):1297-309, 2016.
30. Lavagnino M, Gardner KL, Arnoczky SP. High magnitude, in vitro, biaxial, cyclic tensile strain induces actin depolymerization in tendon cells. Muscles Ligaments Tendons J 5(2):124-8, 2015.
31. Lohberger B, Kaltenegger H, Stuendl N, Rinner B, Leithner A, Sadoghi P. Impact of cyclic mechanical stimulation on the expression of extracellular matrix proteins in human primary rotator cuff fibroblasts. Knee Surg Sports Traumatol Arthrosc 24(12):3884-3891, 2016.
32. Mousavizadeh R, Backman L, McCormack RG, Scott A. Dexamethasone decreases substance P expression in human tendon cells: an in vitro study. Rheumatology (Oxford) 54(2):318-23, 2015.
33. Mousavizadeh R, Khosravi S, Behzad H, McCormack RG, Duronio V, Scott A. Cyclic strain alters the expression and release of angiogenic factors by human tendon cells. PLoS One 9(5):e97356, 2014.
34. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011.
35. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1 increases elasticity of human bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
36. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1 decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
37. Ralphs JR, Waggett AD, Benjamin M. Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biology 21(1):67-74, 2002.
38. Song F, Jiang D, Wang T, Wang Y, Chen F, Xu G, Kang Y, Zhang Y. Mechanical loading improves tendon-bone healing in a rabbit anterior cruciate ligament reconstruction model by promoting proliferation and matrix formation of mesenchymal stem cells and tendon cells. Cell Physiol Biochem 41(3):875-889, 2017.
39. Spang C, Backman LJ, Le Roux S, Chen J, Danielson. Glutamate signaling through the NMDA receptor reduces the expression of scleraxis in plantaris tendon derived cells. BMC Musculoskelet Disord 18(1):218, 2017.
40. Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.
41. Triantafillopoulos IK, Banes AJ, Elfervig MK, Garrett WE, Karas SG. Nandrolone decanoate and loading enhance intercellular calcium signalling in human supraspinatus tendon cells [abstract]. J Bone Joint Surg Br Orthopaedic Proceedings 86-B:171, 2004.
42. Tsujii M, Hirata H, Yoshida T, Imanaka-Yoshida K, Morita A, Uchida A. Involvement of tenascin-C and PG-M/versican in flexor tenosynovial pathology of idiopathic carpal tunnel syndrome. Histol Histopathol 21(5):511-518, 2006.
43. Tsuzaki M, Bynum D, Almekinders L, Faber J, Banes AJ. Mechanical loading stimulates ecto-ATPase activity in human tendon cells. J Cell Biochem 96(1):117-125, 2003.
44. Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ. ATP modulates load-inducible IL-1, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem 89(3):556-562, 2003.
45. Wall ME, Banes AJ. Mechanically-induced strain upregulates connexin-43 mRNA expression in tendon cells [abstract]. Transactions of the 50th Annual Meeting of the Orthopaedic Research Society 29:827, 2004.
46. Wall ME, Otey C, Qi J, Banes AJ. Connexin 43 is localized with actin in tenocytes. Cell Motil Cytoskeleton 64(2):121-130, 2007.
62
47. Wall ME, Weinhold PS, Siu T, Brown TD, Banes AJ. Comparison of cellular strain with applied substrate strain in vitro. J Biomech 40(1):173-181, 2007.
48. Yang Y, Wimpenny I, Wang RK. Application of polarization-sensitive OCT and Doppler OCT in tissue engineering. In: Optical Techniques in Regnerative Medicine, Edited by Morgan SP, Rose F, Matcher SJ. Taylor & Francis Group: Florida, p. 307-327, 2014.
UTERINE
1. Chin-Smith EC, Willey FR, Slater DM, Taggart MJ, Tribe RM. Nuclear factor of activated T-cell isoform expression and regulation in human myometrium. Reprod Biol Endocrinol 13:83, 2015.
2. Korita D, Itoh H, Sagawa N, Yura S, Yoshida M, Kakui K, Takemura M, Nuamah MA, Fujii S. Cyclic mechanical stretching and interleukin-1 synergistically up-regulate prostacyclin secretion in cultured human uterine myometrial cells. Gynecol Endocrinol 18(3):130-7, 2004.
3. Korita D, Sagawa N, Itoh H, Yura S, Yoshida M, Kakui K, Takemura M, Yokoyama C, Tanabe T, Fujii S. Cyclic mechanical stretch augments prostacyclin production in cultured human uterine myometrial cells from pregnant women: possible involvement of up-regulation of prostacyclin synthase expression. J Clin Endocrinol Metab 87(11):5209-5219, 2002.
4. Mohan AR, Sooranna SR, Lindstrom TM, Johnson MR, Bennett PR. The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-B activity in human amnion cells. Endocrinology 148(4):1850-1857, 2007.
5. Sooranna SR, Engineer N, Loudon JA, Terzidou V, Bennett PR, Johnson MR. The mitogen-activated protein kinase dependent expression of prostaglandin H synthase-2 and interleukin-8 messenger ribonucleic acid by myometrial cells: the differential effect of stretch and interleukin-1. J Clin Endocrinol Metab 90(6):3517-3527, 2005.
6. Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod 10(2):109-113, 2004.
7. Takemura M, Itoh H, Sagawa N, Yura S, Korita D, Kakui K, Hirota N, Fujii S. Cyclic mechanical stretch augments both interleukin-8 and monocyte chemotactic protein-3 production in the cultured human uterine cervical fibroblast cells. Mol Hum Reprod 10(8):573-580, 2004.
8. Takemura M, Itoh H, Sagawa N, Yura S, Korita D, Kakui K, Kawamura M, Hirota N, Maeda H, Fujii S. Cyclic mechanical stretch augments hyaluronan production in cultured human uterine cervical fibroblast cells. Mol Hum Reprod 11(9):659-665, 2005.
9. Yoshida M, Sagawa N, Itoh H, Yura S, Takemura M, Wada Y, Sato T, Ito A, Fujii S. Prostaglandin F(2), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod 8(7):681-687, 2002.
UTERINE/MYOMETRIAL SMOOTH MUSCLE CELLS
10. Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe R. Mechanical stretch regulates TrpC proteins and calcium entry in human myometrial smooth muscle cells [abstract]. J Soc Gynecol Invest 11(2 Suppl):225A, 2004.
11. Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe RM. Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod 13(3):31-39, 2007.
12. Loudon JA, Sooranna SR, Bennett PR, Johnson MR. Mechanical stretch of human uterine smooth muscle cells increases IL-8 mRNA expression and peptide synthesis. Mol Hum Reprod 10(12):895-899, 2004.
13. Mitchell JA, Shynlova O, Langille BL, Lye SJ. Mechanical stretch and progesterone differentially regulate activator protein-1 transcription factors in primary rat myometrial smooth muscle cells. Am J Physiol Endocrinol Metab 287(3):E439-E445, 2004.
14. Oldenhof AD, Shynlova OP, Liu M, Langille BL, Lye SJ. Mitogen-activated protein kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cells. Am J Physiol Cell Physiol 283(5):C1530-C1539, 2002.
15. Shynlova OP, Oldenhof AD, Liu M, Langille L, Lye SJ. Regulation of c-fos expression by static stretch in rat myometrial smooth muscle cells. Am J Obstet Gynecol 186(6):1358-1365, 2002.
16. Shynlova O, Tsui P, Dorogin A, Lye SJ. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol 181(2):1470-1479, 2008.
63
17. Sooranna SR, Engineer N, Liang Z, Bennett PR, Johnson MR; Imperial College Parturition Research Group. Stretch and interleukin 1: pro-labour factors with similar mitogen-activated protein kinase effects but differential patterns of transcription factor activation and gene expression. J Cell Physiol 212(1):195-206, 2007.
18. Sooranna SR, Grigsby P, Myatt L, Bennett PR, Johnson MR. Prostanoid receptors in human uterine myocytes: the effect of reproductive state and stretch. Mol Hum Reprod 11(12):859-864, 2005.
19. Sooranna SR, Grigsby PL, Engineer N, Liang Z, Sun K, Myatt L, Johnson MR. Myometrial prostaglandin E2 synthetic enzyme mRNA expression: spatial and temporal variations with pregnancy and labour. Mol Hum Reprod 12(10):625-631, 2006.
20. Terzidou V, Sooranna SR, Kim LU, Thornton S, Bennett PR, Johnson MR. Mechanical stretch up-regulates the human oxytocin receptor in primary human uterine myocytes. J Clin Endocrinol Metab 90(1):237-246, 2005.
OTHER CELL TYPES
1. Alman BA, Greel DA, Ruby LK, Goldberg MJ, Wolfe HJ. Regulation of proliferation and platelet-derived growth factor expression in palmar fibromatosis (Dupuytren contracture) by mechanical strain. J Orthop Res 14(5):722-8, 1996.
2. Balestrini JL, Billiar KL. Magnitude and duration of stretch modulate fibroblast remodeling. J Biomech Eng 131(5):051005, 2009.
3. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem 288(1):141-51, 2013.
4. Branski RC, Perera P, Verdolini K, Rosen CA, Hebda PA, Agarwal S. Dynamic biomechanical strain inhibits IL-1-induced inflammation in vocal fold fibroblasts. J Voice 21(6):651-660, 2007.
5. Campbell J, DeYoung L, Chung E, Brock G. MP89-20 Traction applied to Peyronie’s disease cells reduces cellular fibroisis. J Urol 195(4):e1144, 2016.
6. Chung E, De Young L, Solomon M, Brock GB. Peyronie's disease and mechanotransduction: an in vitro analysis of the cellular changes to Peyronie's disease in a cell-culture strain system. J Sex Med 10(5):1259-67, 2013.
7. Du QC, Zhang DZ, Chen XJ, Lan-Sun G, Wu M, Xiao WL. The effect of p38MAPK on cyclic stretch in human facial hypertrophic scar fibroblast differentiation. PLoS One 8(10):e75635, 2013.
8. Du GL, Chen WY, Li XN, He R, Feng PF. Induction of MMP‑1 and ‑3 by cyclical mechanical stretch is mediated by IL‑6 in cultured fibroblasts of keratoconus. Mol Med Rep 15(6):3885-3892, 2017.
9. Ferdous Z, Lazaro LD, Iozzo RV, Höök M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008.
10. Fisher DD, Cyr RJ. Mechanical forces in plant growth and development. Gravit Space Biol Bull 13(2):67-73, 2000.
11. Foolen J, Deshpande VS, Kanters FM, Baaijens FP. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 33(30):7508-7518, 2012.
12. Foolen J, Janssen-van den Broek MW, Baaijens FP. Synergy between Rho signaling and matrix density in cyclic stretch-induced stress fiber organization. Acta Biomater 10(5):1876-85, 2014.
13. Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Roskelley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci 130(1):152-163, 2017.
14. Giannone G, Jiang G, Sutton DH, Critchley DR, Sheetz MP. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163(2):409-419, 2003.
15. Gupta A, Nitoiu D, Brennan-Crispi D, Addya S, Riobo NA, Kelsell DP, Mahoney MG. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin a deregulation and a potential role in cell-cell adhesion. PLoS One 10(3):e0120091, 2015.
16. Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M. Conversion of mechanical force into biochemical signaling. J Biol Chem 279(52):54793-54801, 2004.
17. He Z, Potter R, Li X, Flessner M. Stretch of human mesothelial cells increases cytokine expression. Adv Perit Dial 28:2-9, 2012.
64
18. Jing Q, Guang-yun Z, Zhen T, Yue Z, Jiang-bo Y, Xiao Y. Effects of p38MAPK signaling pathway on cyclic tensile stress-induced fibroblast apoptosis. Journal of Clinical Rehabilitative Tissue Engineering Research 15(20):3789-3792, 2011.
19. Joshi B, Bastiani M, Strugnell SS, Boscher C, Parton RG, Nabi IR. Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. J Cell Biol 199(3):425-35, 2012. Erratum in J Cell Biol 200(5):681, 2013.
20. Lee SK, Lee CY, Kook YA, Lee SK, Kim EC. Mechanical stress promotes odontoblastic differentiation via the heme oxygenase-1 pathway in human dental pulp cell line. Life Sci 86(3-4):107-114, 2010.
21. Lewis JS, Dolgova NV, Chancellor TJ, Acharya AP, Karpiak JV, Lele TP, Keselowsky BG. The effect of cyclic mechanical strain on activation of dendritic cells cultured on adhesive substrates. Biomaterials 34(36):9063-70, 2013.
22. Loperena R, Gomez JA, Engel N, Harrison DG. Mechanical stretch on endothelial cells promotes monocyte differentiation into immunogenic dendritic cells. The FASEB Journal 31(1 Supplement): lb692-lb692, 2017.
23. Lutz R, Sakai T, Chiquet M. Pericellular fibronectin is required for RhoA-dependent responses to cyclic strain in fibroblasts. J Cell Sci 123(Pt 9):1511-1521, 2010.
24. Lynch KM, Ahsan T. Correlating the effects of bone morphogenic protein to secreted soluble factors from fibroblasts and mesenchymal stem cells in regulating regenerative processes in vitro. Tissue Eng Part A 20(23-24):3122-9, 2014.
25. Matheson LA, Maksym GN, Santerre JP, Labow RS. Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J Biomed Mater Res A 76(1):52-62, 2006.
26. Matheson LA, Maksym GN, Santerre JP, Labow RS. Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: Influence of extracellular matrix type proteins. J Biomed Mater Res A 81:971-981, 2007.
27. Matheson LA, Maksym GN, Santerre JP, Labow RS. The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 84(5):763-773, 2006.
28. Osada T, Watanabe S, Tanaka H, Hirose M, Miyazaki A, Sato N. Effect of mechanical strain on gastric cellular migration and proliferation during mucosal healing: role of Rho dependent and Rac dependent cytoskeletal reorganization. Gut 45(4):508-515, 1999.
29. Pereira AM, Tudor C, Kanger JS, Subramaniam V, Martin-Blanco E. Integrin-dependent activation of the JNK signaling pathway by mechanical stress. PLoS One 6(12):e26182, 2011.
30. Qu H, Gao P. The effect of squarewave stretching on apoptosis of human oral squamous cell carcinoma KB cells. Biomedical Engineering and Informatics (BMEI), 2012 5th International Conference on, 1598-1601, 2012.
31. Ruiz-Zapata AM, Kerkhof MH, Zandieh-Doulabi B, Brölmann HA, Smit TH, Helder MN. Fibroblasts from women with pelvic organ prolapse show differential mechanoresponses depending on surface substrates. Int Urogynecol J 24(9):1567-75, 2013.
32. Sawada Y, Sheetz MP. Force transduction by Triton cytoskeletons. J Cell Bio 156:609-615, 2002.
33. Tamiello C, Halder M, Kamps MA, Baaijens FP, Broers JL, Bouten CV. Cellular strain avoidance is mediated by a functional actin cap - observations in an Lmna-deficient cell model. J Cell Sci 130(4):779-790, 2017.
34. Tillu VA, Kovtun O, McMahon KA, Collins BM, Parton RG. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Mol Biol Cell 26(20):3561-9, 2015.
35. Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 10:78, 2010.
36. Wang JC, Lee JY, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 130(6):1094-1109, 2017.
37. Wang Y, Qu H. Effect of mechanical stretch on apoptosis and Bax/Bcl-2 protein expression of human oral squamous cell carcinoma KB cells in vitro. In: Proceedings of the 2016 International Conference on Biotechnology & Medical Science. Ed. Y Zhang. World Scientific Publishing Co. Pte. Ltd.: Singapore, 191-198, 2017.
38. Wehner S, Buchholz BM, Schuchtrup S, Rocke A, Schaefer N, Lysson M, Hirner A, Kalff JC. Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. Am J Physiol Gastrointest Liver Physiol 299(5):G1187-G1197, 2010.
65
39. Yang F, Yang D, Zhou J, Dai H, Huang L. Effect of ERK1/2 signal pathway on the expression of OPG/RANKL in cementoblasts under stress stimulation. Medical Journal of Chinese People's Liberation Army 39(12):941-945, 2014.
40. Yao W, Li X, Zhao B, Du G, Feng P, Chen W. Combined effect of TNF-α and cyclic stretching on gene and protein expression associated with mineral metabolism in cementoblasts. Arch Oral Biol 73:88-93, 2017.
41. Yu J, Xie YJ, Xu D, Zhao SL. Effect of cyclic strain on cell morphology, viability and proliferation of human dental pulp cells in vitro. Shanghai Kou Qiang Yi Xue 18(6):599-603, 2009.
42. Zhang H, Wang Y, Bai X, Lv Z, Zou J, Xu W, Wang H. Cyclic tensile strain on vocal fold fibroblasts inhibits cigarette smoke-induced inflammation: implications for Reinke edema. J Voice 29(1):13-21, 2015.
43. Zong W, Jallah ZC, Stein SE, Abramowitch SD, Moalli PA. Repetitive mechanical stretch increases extracellular collagenase activity in vaginal fibroblasts. Female Pelvic Med Reconstr Surg 16(5):257-262, 2010.
REVIEWS & COMMENTARIES
1. Anderson JE, Wozniak AC. Satellite cell activation on fibers: modeling events in vivo — an invited review. Can J Physiol Pharmacol 82:300-310, 2004.
2. Banes AJ. Out of academics: education, entrepreneurship and enterprise. Ann Biomed Eng 2013 Jun 25. [Epub ahead of print].
3. Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 10(3):e0119816, 2015.
4. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics 33(1):3-14, 2000.
5. Chen Z, Zhang Y, Liang C, Chen L, Zhang G, Qian A. Mechanosensitive miRNAs and bone formation. Int J Mol Sci 18(8) pii: E1684, 2017.
6. Cummins PM, Cotter EJ, Cahill PA. Hemodynamic regulation of metallopeptidases within the vasculature. Protein Pept Lett 11(5):433-442, 2004.
7. Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 292:H28-H42, 2007.
8. Delaine-Smith RM, Javaheri B, Helen Edwards J, Vazquez M, Rumney RM. Preclinical models for in vitro mechanical loading of bone-derived cells. Bonekey Rep 4:728, 2015.
9. Dogan A, Elcin AE, Elcin YM. Translational applications of tissue engineering in cardiovascular medicine. Curr Pharm Des 23(6):903-914, 2017. doi: 10.2174/1381612823666161111141954.
10. Endlich N, Endlich K. The challenge and response of podocytes to glomerular hypertension. Semin Nephrol 32(4):327-41, 2012.
11. Friedrich O, Schneidereit D, Nikolaev YA, Nikolova-Krstevski V, Schürmann S, Wirth-Hücking A, Merten AL, Fatkin D, Martinac B. Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling. Prog Biophys Mol Biol 2017 Jun 21. pii: S0079-6107(17)30036-6. doi: 10.1016/j.pbiomolbio.2017.06.011. [Epub ahead of print].
12. Gupta V, Grande-Allen KJ. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72(3):375-383, 2006.
13. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie JP, McVicker CG, Moir LM, Nguyen TT, Peng Q, Ramos-Barbon D, Stewart AG. Proliferative aspects of airway smooth muscle. Journal of Allergy and Clinical Immunology 114(2 Suppl):S2-S17, 2004.
14. Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q, Xu F, Lu TJ. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 4(4):042001, 2012.
15. Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE 2004(249):RE12, 2004.
16. Kamble H, Barton MJ, Jun M, Park S, Nguyen NT. Cell stretching devices as research tools: engineering and biological considerations. Lab Chip 16(17):3193-203, 2016.
17. Kaunas R. Dynamic stress fiber reorganization on stretched matrics. In: Cell and Matrix Mechanics ed, Kaunas R, Zemel A. CRC Press: Boca Raton, 2015.
18. Kmiecik G, Spoldi V, Silini A, Parolini O. Current view on osteogenic differentiation potential of mesenchymal stromal cells derived from placental tissues. Stem Cell Rev 11(4):570-85, 2015.
19. Krishnan R, Park JA, Seow CY, Lee PV, Stewart AG. Cellular biomechanics in drug screening and evaluation: mechanopharmacology. Trends Pharmacol Sci 37(2):87-100, 2016.
66
20. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1):21-34, 2006.
21. Liu J, Huang Y, Chen S, Tang C, Jin H, Du J. Role of endogenous sulfur dioxide in regulating vascular structural remodeling in hypertension. Oxid Med Cell Longev 2016:4529060, 2016.
22. Mantella LE, Quan A, Verma S. Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc Cell 7:7, 2015.
23. McPartland JM. The endocannabinoid system: an osteopathic perspective. J Am Osteopath Assoc 108(10):586-600, 2008.
24. Noda M, Takuwa Y, Katoh T, Kurokawa K. Stretch-induced parathyroid hormone-related peptide gene expression: implication in the regulation of myogenic tone. Curr Opin Nephrol Hypertens 4(5):383-387, 1995.
25. Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes-hypothetical roles in CNS pathophysiology. Brain Research Reviews 48(3):488-508, 2005.
26. Park JS, Huang NF, Kurpinski KT, Patel S, Hsu S, Li S. Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front Biosci 12:5098-5116, 2007.
27. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, Nakata Y, Takami S, Higaki J, Ogihara T. Links between hypertension and myocardial infarction. American Heart Journal 132(1 Pt 2 Su):213-221, 1996.
28. Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2017 Apr 3. doi: 10.1002/term.2270. [Epub ahead of print].
29. Rutkovskiy A, Stensløkken KO, Vaage IJ. Osteoblast differentiation at a glance. Med Sci Monit Basic Res 22:95-106, 2016.
30. Sart S, Agathos SN, Li Y, Ma T. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Biotechnol J 11(1):43-57, 2016.
31. Scuderi GJ, Butcher J. Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol 5:50, 2017.
32. Somers SM, Spector AA, DiGirolamo DJ, Grayson WL. Biophysical stimulation for engineering functional skeletal muscle. Tissue Eng Part B Rev 23(4):362-372, 2017.
33. Songu-Mize E, Liu X, Hymel LJ. Effect of mechanical strain on expression of Na+,K+-ATPase subunits in rat aortic smooth muscle cells. Amer J Med Sci 316(3):196-199, 1998.
34. Sun X, Nunes SS. Bioengineering approaches to mature human pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol 5:19, 2017.
35. Tabatabaei F, Bordbar M. Effect of mechanical stimulation on differentiation of human mesenchymal stem cells to different cell lines: a systematic review. Journal of Islamic Dental Association of IRAN (JIDAI) 25(4):4, 2014.
36. Takei T, Mills I, Arai K, Sumpio BE. Molecular basis for tissue expansion: clinical implications for the surgeon. Plast Reconstr Surg 102(1):247-258, 1998.
37. Tanaka S, Hamanishi C, Kikuchi H, Fukuda K. Factors related to degradation of articular cartilage in osteoarthritis: a review. Semin Arthritis Rheum 27(6):392-399, 1998.
38. Thompson MS, Epari DR, Bieler F, Duda GN. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H 224(12):1533-1541, 2010.
39. Trumbull A, Subramanian G, Yildirim-Ayan E. Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells. Biomed Eng Online 15:43, 2016.
40. Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol Regulatory Integrative Comp Physiol 262(3):R350-355, 1992.
41. van Meer BJ, Tertoolen LG, Mummery CL. Concise review: Measuring physiological responses of human pluripotent stem cell derived cardiomyocytes to drugs and disease. Stem Cells 34(8):2008-15, 2016.
42. Wall M, Butler D, Haj AE, Bodle JC, Loboa EG, Banes AJ. Key developments that impacted the field of mechanobiology and mechanotransduction. J Orthop Res 2017 Aug 17. doi: 10.1002/jor.23707. [Epub ahead of print].
43. Yan L, Zhao L, Li S, Habibou Z. Effects of hedgehog pathway genes on the response to tensile force and inflammatory cytokines in rat condylar cartilage cells. Int J Clin Exp Pathol 9(8):7793-7799, 2016.
44. Youngstrom DW, Barrett JG. Engineering tendon: scaffolds, bioreactors, and models of regeneration. Stem Cells Int 2016:3919030, 2016.
45. Zein-Hammoud M, Standley PR. Modeled osteopathic manipulative treatments: A review of their in vitro effects on fibroblast tissue preparations. J Am Osteopath Assoc 115(8):490-502, 2015.
67
46. Zhang Y, Sekar RB, McCulloch AD, Tung L. Cell cultures as models of cardiac mechanoelectric feedback. Prog Biophys Mol Biol 97(2-3):367-382, 2008.
UNIFLEX® AND UNIAXIAL TENSION
1. Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, Thibboneir A, Capla JM, McCarthy JG, Gurtner GC. Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res 143(2):329-336, 2007.
2. Boonen KJ, Langelaan ML, Polak RB, van der Schaft DW, Baaijens FP, Post MJ. Effects of a combined mechanical stimulation protocol: value for skeletal muscle tissue engineering. J Biomech 43(8):1514-1521, 2010.
3. Brown JP, Finley VG, Kuo CK. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech 47(1):214-22, 2014.
4. Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther 6:89, 2015.
5. Dugan JM, Cartmell SH, Gough JE. Uniaxial cyclic strain of human adipose-derived mesenchymal stem cells and C2C12 myoblasts in coculture. J Tissue Eng 5:2041731414530138, 2014.
6. Foolen J, Deshpande VS, Kanters FM, Baaijens FP. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 33(30):7508-7518, 2012.
7. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105(32):11305-11310, 2008.
8. Hamilton DW, Maul TM, Vorp DA. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Engineering 10(3-4):361-369, 2004.
9. Huri PY, Wang A, Spector AA, Grayson WL. Multistage adipose-derived stem cell myogenesis: an experimental and modeling study. Cellular and Molecular Bioengineering 7(4):497-509, 2014.
10. Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech 38(8):1653-1664, 2005.
11. Juffer P, Jaspers RT, Klein-Nulend J, Bakker AD. Mechanically loaded myotubes affect osteoclast formation. Calcif Tissue Int 94(3):319-26, 2014.
12. Kim JH, Kang MS, Eltohamy M, Kim TH, Kim HW. Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering. PLoS One 11(3):e0149967, 2016.
13. Lee EL, Bendre HH, Kalmykov A, Wong JY. Surface modification of uniaxial cyclic strain cell culture platform with temperature-responsive polymer for cell sheet detachment. J Mater Chem B Mater Biol Med 3(40):7899-7902, 2015.
14. Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6(4):265-273, 2007.
15. Matheson LA, Jack FN, Maksym GN, Paul SJ, Labow RS. Characterization of the Flexcell Uniflex cyclic strain culture system with U937 macrophage-like cells. Biomaterials 27(2):226-233, 2006.
16. Matheson LA, Maksym GN, Santerre JP, Labow RS. Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: Influence of extracellular matrix type proteins. J Biomed Mater Res A 81:971-981, 2007.
17. Matheson LA, Maksym GN, Santerre JP, Labow RS. The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 84(5):763-773, 2006.
18. Rolin GL, Binda D, Tissot M, Viennet C, Saas P, Muret P, Humbert P. In vitro study of the impact of mechanical tension on the dermal fibroblast phenotype in the context of skin wound healing. J Biomech 47(14):3555-61, 2014.
68
19. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96(6):635-642, 2005.
20. Sedding DG, Homann M, Seay U, Tillmanns H, Preissner KT, Braun-Dullaeus RC. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J 22(2):579-589, 2008.
21. Sedding DG, Widmer-Teske R, Mueller A, Stieger P, Daniel JM, Gündüz D, Pullamsetti S, Nef H, Moellmann H, Troidl C, Hamm C, Braun-Dullaeus R. Role of the phosphatase PTEN in early vascular remodeling. PLoS One 8(3):e55445, 2013.
22. Sheikh AQ, Kuesel C, Taghian T, Hurley JR, Huang W, Wang Y, Hinton RB, Narmoneva DA. Angiogenic microenvironment augments impaired endothelial responses under diabetic conditions. Am J Physiol Cell Physiol 306(8):C768-78, 2014.
23. Sun L, Qu L, Zhu R, Li H, Xue Y, Liu X, Fan J, Fan H. Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int. 2016:9842075, 2016.
24. Tamiello C, Bouten CV, Baaijens FP. Competition between cap and basal actin fiber orientation in cells subjected to contact guidance and cyclic strain. Sci Rep 5:8752, 2015.
25. Tamiello C, Halder M, Kamps MA, Baaijens FP, Broers JL, Bouten CV. Cellular strain avoidance is mediated by a functional actin cap - observations in an Lmna-deficient cell model. J Cell Sci 130(4):779-790, 2017.
26. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123-1130, 2009.
27. Thompson CL, Chapple JP, Knight MM. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes. Osteoarthritis Cartilage 22(3):490-8, 2014.
28. Tondon A, Haase C, Kaunas R. Mechanical stretch assays in cell culture systems. In: Handbook of Imaging in Biological Mechanics, ed. Neu CP, Genin GM. CRC Press: Boca Raton, 2015.
29. Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86(12):1212-1216, 2007.
30. Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 78(3):358-63, 2009.
二、FX-5000TT三维细胞或组织牵张拉伸培养系统(TISSUE TRAIN® AND 3D CULTURE SYSTEM)应用文献
1. Abraham T, Kayra D, McManus B, Scott A. Quantitative assessment of forward and backward second harmonic three dimensional images of collagen type I matrix remodeling in a stimulated cellular environment. J Struct Biol 180(1):17-25, 2012.
2. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.
3. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.
4. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem 288(1):141-51, 2013.
5. Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Lainé J, Ben Yaou R, Bonne G, Coirault C. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127(Pt 13):2873-84, 2014.
6. Cao TV, Hicks MR, Campbell D, Standley PR. Dosed myofascial release in three-dimensional bioengineered tendons: effects on human fibroblast hyperplasia, hypertrophy, and cytokine secretion. J Manipulative Physiol Ther 36(8):513-21, 2013.
69
7. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR. Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72-82, 2015.
8. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011.
9. Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. A three-dimensional gel bioreactor for assessment of cardiomyocyte induction in skeletal muscle-derived stem cells. Tissue Eng Part C Methods 16(3):375-385, 2010.
10. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.
11. Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.
12. Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from skeletal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
13. de Jonge N, Foolen J, Brugmans MC, Söntjens SH, Baaijens FP, Bouten CV. Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng Part A 20(11-12):1747-57, 2014.
14. de Lange WJ, Grimes AC, Hegge LF, Ralphe JC. Ablation of cardiac myosin-binding protein-C accelerates contractile kinetics in engineered cardiac tissue. J Gen Physiol 141(1):73-84, 2013.
15. Ferdous Z, Lazaro LD, Iozzo RV, Höök M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008.
16. Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Roskelley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci 130(1):152-163, 2017.
17. Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.
18. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.
19. Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q, Xu F, Lu TJ. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 4(4):042001, 2012.
20. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor- and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009.
21. Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. Biochim Biophys Acta 1833(12):2596-2607, 2013.
22. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.
23. Masumoto H, Nakane T, Tinney JP, Yuan F, Ye F, Kowalski WJ, Minakata K, Sakata R, Yamashita JK, Keller BB. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep 6:29933, 2016.
24. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87(4):2107-13, 2015.
25. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.
26. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30(1):80-89, 2010.
27. Peters AS, Brunner G, Krieg T, Eckes B. Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch Dermatol Res 307(2):191-7, 2015.
70
28. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011.
29. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
30. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1 increases elasticity of human bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
31. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
32. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-B pathways dependent. Exp Cell Res 315(11):1990-2000, 2009.
33. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012.
34. Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121-36, 2015.
35. Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33(7):2148-57, 2015.
36. Schmidt JB, Chen K, Tranquillo RT. Effects of intermittent and incremental cyclic stretch on ERK signaling and collagen production in engineered tissue. Cellular and Molecular Bioengineering 1-10, 2015.
37. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.
38. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 10:27, 2009.
39. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 4:6614, 2014.
40. Tchao J, Kim JJ, Lin B, Salama G, Lo CW, Yang L, Tobita K. Engineered human muscle tissue from skeletal muscle derived stem cells and induced pluripotent stem cell derived cardiac cells. Int J Tissue Eng. 2013:198762, 2013.
41. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.
42. Tondon A, Haase C, Kaunas R. Mechanical stretch assays in cell culture systems. In: Handbook of Imaging in Biological Mechanics, ed. Neu CP, Genin GM. CRC Press: Boca Raton, 2015.
43. Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.
44. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011.
45. Weinbaum JS, Schmidt JB, Tranquillo RT. Combating adaptation to cyclic stretching by prolonging activation of extracellular signal-regulated kinase. Cellular and Molecular Bioengineering 6(3):279-286, 2013.
46. Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010.
47. Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34(37):9295-306, 2013.
48. Yang Y, Wimpenny I, Wang RK. Application of polarization-sensitive OCT and Doppler OCT in tissue engineering. In: Optical Techniques in Regnerative Medicine, edited by Morgan SP, Rose F, Matcher SJ. Taylor & Francis Group: Florida, p. 307-327, 2014.
49. Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 1(5):e00078, 2013.
71
TENSION SYSTEM STRAIN PROFILES
1. Brown TD, Bottlang M, Pedersen DR, Banes AJ. Development and experimental validation of a fluid/structure-interaction finite element model of a vacuum-driven cell culture mechanostimulus system. Comput Methods Biomech Biomed Engin 3(1):65-78, 2000.
2. Brown TD, Bottlang M, Pedersen DR, Banes AJ. Loading paradigms--intentional and unintentional--for cell culture mechanostimulus. Am J Med Sci 316(3):162-168, 1998.
3. Colombo A, Cahill PA, Lally C. An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies. Proc Inst Mech Eng H 222(8):1235-1245, 2008.
4. Gilbert JA, Weinhold PS, Banes AJ, Link GW, Jones GL. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. Journal of Biomechanics 27(9):1169-1177, 1994.
5. Matheson LA, Jack FN, Maksym GN, Paul SJ, Labow RS. Characterization of the Flexcell Uniflex cyclic strain culture system with U937 macrophage-like cells. Biomaterials 27(2):226-233, 2006.
6. Throm Quinlan AM, Sierad LN, Capulli AK, Firstenberg LE, Billiar KL. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8):e23272, 2011.
7. Vande Geest JP, Di Martino ES, Vorp DA. An analysis of the complete strain field within FlexercellTM membranes. Journal of Biomechanics 37:1923-1928, 2004.
APPLICATION OF TENSION SYSTEM
1. Bartalena G, Grieder R, Sharma RI, Zambelli T, Muff R, Snedeker JG. A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device. Biomed Microdevices 13(2):291-301, 2011.
2. Olesen CG, Pennisi CP, de Zee M, Zachar V, Rasmussen J. Elliptical posts allow for detailed control of non-equibiaxial straining of cell cultures. J Tissue Viability 22(2):52-6, 2013.
3. Wiggins MJ, Anderson JM, Hiltner A. Biodegradation of polyurethane under fatigue loading. J Biomed Mater Res A 65(4):524-535, 2003.
4. Wiggins MJ, MacEwan M, Anderson JM, Hiltner A. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J Biomed Mater Res A 68(4):668-683, 2004.
二、FX-5000C细胞或组织压力培养与实时观察系统(compression SYSTEM )应用文献:BIOPRESS™ AND COMPRESSION SYSTEM
1. Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 7(5):e36964, 2012.
2. Bougault C, Paumier A, Aubert-Foucher E, Mallein-Gerin F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol 8:71, 2008.
3. Chen X, Guo J, Yuan Y, Sun Z, Chen B, Tong X, Zhang L, Shen C, Zou J. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Molecular Medicine Reports 15(5):2890-2896, 2017.
4. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 20(23-24):3142-3153, 2014.
5. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 21(9-10):1720-32, 2015.
6. Fermor B, Haribabu B, Weinberg JB, Pisetsky, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochemical and Biophysical Research Communications 285:806–810, 2001.
72
7. Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of the nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 13:935-941, 2005.
8. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 9(4):729-737, 2001.
9. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792–798, 2002.
10. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481-487, 2001.
11. Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. Tissue Eng 12(6):1527-1537, 2006.
12. Glaeser JD, Salehi K, Kanim LE, NaPier Z, Kropf MA, Cuellar J, Sheyn D, Bae HW. Treatment with the NFB inhibitor reduces overloading-induced MMP expression in human nucleus pulposus cells. The Spine Journal 17(10):S127, 2017.
13. Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Research & Therapy 8:R135, 2006.
14. Graff RD, Lazarowski ER, Banes AJ, Lee GM. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43(7):1571-1579, 2000.
15. Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 311(5):H1189-H1201, 2016.
16. Hara M, Nakashima M, Fujii T, Uehara K, Yokono C, Hashizume R, Nomura Y. Construction of collagen gel scaffolds for mechanical stress analysis. Biosci Biotechnol Biochem 78(3):458-61, 2014.
17. Hazenbiller O, Duncan NA, Krawetz RJ. Reduction of pluripotent gene expression in murine embryonic stem cells exposed to mechanical loading or Cyclo RGD peptide. BMC Cell Biol 18(1):32, 2017. doi: 10.1186/s12860-017-0148-6.
18. Hennerbichler A, Fermor B, Hennerbichler, Weinberg JB, Guilak F. Regional differences in prostaglandin E2 and nitric oxide production in the knee meniscus in response to dynamic compression. Biochemical and Biophysical Research Communications 358:1047–1053, 2007.
19. Huang D, Liu YP, Huang YJ, Xie YF, Shen KH, Zhang DW, Mou Y. Mechanical compression up-regulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 55(5-6):391-6, 2014.
20. Kuroki K, Cook JL, Stoker AM, Turnquist SE, Kreeger JM, Tomlinson JL. Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 13:225-234, 2005.
21. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.
22. Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S, Yan T. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep 36(4), 2016. pii: e00355.
23. Li X, Dong J, Liu C, Wang X, An M, Chen W. Contributions of intermittent cyclic compression to proteoglycans synthesis and mechanical properties of knee articular cartilaginous tissue formed in vitro. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference 4:1655-1658, 2010.
24. Maxson S, Orr D, Burg K. Bioreactors for tissue engineering. Tissue Eng 179-197, 2011.
25. Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, Hamanishi C. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res 59(6):471-477, 2010.
26. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 20(3):621-9, 2016.
27. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16(1):R16, 2014.
73
28. Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis Cartilage 13:1092-1099, 2005.
29. Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain. Tissue Eng Part A 21(3-4):518-29, 2015.
30. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17(4):473-481, 2009.
31. Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin YE. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193-203. 2012.
32. Sharma R, Vinjamaram S, Shah VA, Gupta SK, Chalam KV. The effect of elevated atmospheric pressure on the survival of retinal ganglion cells using Flexcell biopress system. Invest Ophthalmol Vis Sci 44:E-Abstract 152, 2003.
33. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308-313, 2003.
34. Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol 34(3):556-562, 2007.
35. Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y. Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels. Cytotechnology 67(1):19-26, 2015.
36. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963-969, 2003.
37. Werkmeister E, de Isla N, Netter P, Stoltz JF, Dumas D. Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy. Photochem Photobiol 86(2):302-310, 2010.
38. Xu HG, Zhang W, Zheng Q, Yu YF, Deng LF, Wang H, Liu P, Zhang M. Investigating conversion of endplate chondrocytes induced by intermittent cyclic mechanical unconfined compression in three-dimensional cultures. European Journal of Histochemistry 58:2415, 2014.
39. Zhou Q, Yu BH, Liu WC, Wang ZL. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cell Dev Biol Anim 52(7):757-71, 2016.
40. Zhou W, Liu G, Yang S, Ye S. Investigation for effects of cyclical dynamic compression on matrix metabolite and mechanical properties of chondrocytes cultured in alginate. Journal of Hard Tissue Biology 25(4):351-356, 2016.
APPLICATION OF COMPRESSION SYSTEM
1. Ackermann P, Schizas N, Bring D, Li J, Andersson T, Fahlgren A, Aspenberg P. Compression therapy promotes tissue repair and biomechanical properties during immobilization. J Bone Joint Surg Br 94B (Supp XXXVII) 89, 2012.
四、STR-4000细胞流体剪切力加载培养与实时观察系统(FLEXFLOW™ AND STREAMER® FLUID SHEAR STRESS SYSTEMS)应用文献:
1. Archambault JM, Elfervig MK, Tsuzaki M, Herzog W, Banes AJ. Shear stress response of rabbit tendon cells is serum dependent. Proceedings of the Eleventh Canadian Society for Biomechanics Conference, 181, 2000.
2. Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ. Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech 35(3):303-309, 2002.
74
3. Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, Tatake RJ, Pober JS. MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 18(2):102-117, 2011.
4. de Castro LF, Maycas M, Bravo B, Esbrit P, Gortazar A. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol 230(2):278-85, 2015.
5. Eifler RL, Blough ER, Dehlin JM, Haut Donahue TL. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J Orthop Res 24(3):375-384, 2006.
6. Elfervig M, Francke E, Archambault J, Herzog W, Tsuzaki M, Bynum D, Brown TD, Banes AJ. Fluid-induced shear stress activates human tendon cells to signal through multiple Ca2+ dependent pathways [abstract]. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society 25:179, 2000.
7. Elfervig M, Lotano M, Tsuzaki M, Faber J, Banes A J. Fluid-induced shear stress modulates Cx-43 expression in avian tendon cells but does not induce a Ca2+ signal [abstract]. Transactions of the 47th Annual Meeting of the Orthopaedic Research Society 26:570, 2001.
8. Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ. IL-1 sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem 82(2):290-298, 2001.
9. Finley MJ, Rauova L, Alferiev IS, Weisel JW, Levy RJ, Stachelek SJ. Diminished adhesion and activation of platelets and neutrophils with CD47 functionalized blood contacting surfaces. Biomaterials 33(24):5803-5811, 2012.
10. Francke E, Banes A, Elfervig M, Brown T, Bynum D. Fluid-induced shear stress increases [Ca2+]ic in cultured human tendon epitenon cells [abstract]. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society 25:638, 2000.
11. Francke E, Elfervig MK, Sood A, Brown TD, Bynum DK, Banes AJ. Fluid-induced shear stress stimulates Ca2+ signaling in human epitenon cells [abstract]. 1999 Advances in Bioengineering, J.S. Wayne, ed. American Society of Mechanical Engineers: New York, 1999.
12. Gao X, Wu L, O'Neil RG. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278(29):27129-27137, 2003.
13. Ge C, Song J, Chen L, Wang L, Chen Y, Liu X, Zhang Y, Zhang L, Zhang M. Atheroprotective pulsatile flow induces ubiquitin-proteasome-mediated degradation of programmed cell death 4 in endothelial cells. PLoS One 9(3):e91564, 2014.
14. Glossop JR, Hidalgo-Bastida LA, Cartmell SH. Fluid shear stress induces differential gene expression of leukemia inhibitory factor in human mesenchymal stem cells. J Biomat Tiss Eng 1:166-176, 2011.
15. Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T. Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288(12):8168-8175, 2013.
16. Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 26(10):4131-41, 2012.
17. Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, Konstantopoulos K, Wang ZY, Wang P. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 6(11):9140-59, 2015.
18. Hamamura K, Zhang P, Zhao L, Shim JW, Chen A, Dodge TR, Wan Q, Shih H, Na S, Lin CC, Sun HB, Yokota H. Knee loading reduces MMP13 activity in the mouse cartilage. BMC Musculoskelet Disord 14(1):312, 2013.
19. Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K, Warabi E, Noguchi N, Itoh K, Yamamoto M. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem 280(29):27244-27250, 2005.
20. Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD, Ridge KM. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J Biol Chem 283(37):25348-25355, 2008.
21. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone. Bone 47(5):872-881, 2010.
22. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.
75
23. Li M, Liu X, Zhang Y, Di M, Wang H, Wang L, Chen Y, Liu X, Cao X, Zeng R, Zhang Y, Zhang M. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl) 94(4):431-41, 2016.
24. Liao C, Cheng T, Wang S, Zhang C, Jin L, Yang Y. Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways. Bone 101:10-20, 2017.
25. Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 6:e1827, 2015.
26. Malone AM, Batra NN, Shivaram G, Kwon RY, You L, Kim CH, Rodriguez J, Jair K, Jacobs CR. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts. Am J Physiol Cell Physiol 292(5):C1830-C1836, 2007.
27. Maycas M, Ardura JA, de Castro LF, Bravo B, Gortázar AR, Esbrit P. Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J Bone Miner Res 30(7):1231-44, 2015.
28. Maycas M, Bravo-Molina B, Fernández de Castro L, Pozuelo JM, Forriol F, P Esbrit, Rodríguez de Gortázar A. High glucose alters the antiapoptotic response to mechanical stimulation in MLO-Y4 osteocytic cells. Trauma Fund MAPFRE 25(2):97-100, 2014.
29. Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol 295(2):H736-H742, 2008.
30. Ni J, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem 285(6):4038-4048, 2010.
31. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
32. Radel C, Carlile-Klusacek M, Rizzo V. Participation of caveolae in 1 integrin-mediated mechanotransduction. Biochem Biophys Res Commun 358(2):626-631, 2007.
33. Radel C, Rizzo V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 288(2):H936-H945, 2005.
34. Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB, Sznajder JI, Goldman RD. Keratin 8 phosphorylation by protein kinase C regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 280(34):30400-30405, 2005.
35. Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing. PLoS One 12(2):e0171857, 2017.
36. Riehl BD, Lee JS, Ha L, Lim JY. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors. J R Soc Interface 12(107), 2015. pii: 20150300.
37. Rosser J, Bonewald LF. Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5. Methods Mol Biol 816:67-81, 2012.
38. Shim JW, Hamamura K, Chen A, Wan Q, Na S, Yokota H. Rac1 mediates load-driven attenuation of mRNA expression of nerve growth factor in cartilage and chondrocytes. J Musculoskelet Neuronal Interact 13(3):372-9, 2013.
39. Siu KL, Gao L, Cai H. Differential roles of /NOXO1 and NOX2/p47phox in mediating endothelial redox responses to oscillatory and unidirectional laminar shear stress. J Biol Chem 291(16):8653-62, 2016.
40. Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM. Micromechanical properties of keratin intermediate filament networks. PNAS 105(3):889-894, 2008.
41. Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM. Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C . Mol Biol Cell 20(11):2755-2765, 2009.
42. Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 290(27):16744-58, 2015.
43. Srivastava T, McCarthy ET, Sharma R, Cudmore PA, Sharma M, Johnson ML, Bonewald LF. Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J Cell Commun Signal 4(2):79-90, 2010.
44. Stachelek SJ, Alferiev I, Connolly JM, Sacks M, Hebbel RP, Bianco R, Levy RJ. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo. Ann Thorac Surg 81(1):47-55, 2006.
76
45. Sun HB, Liu Y, Qian L, Yokota H. Model-based analysis of matrix metalloproteinase expression under mechanical shear. Ann Biomed Eng 31(2):171-180, 2003.
46. Takai E, Landesberg R, Katz RW, Hung CT, Guo XE. Substrate modulation of osteoblast adhesion strength, focal adhesion kinase activation, and responsiveness to mechanical stimuli. Mol Cell Biomech 3(1):1-12, 2006.
47. Thaler JD, Achari Y, Lu T, Shrive NG, Hart DA. Estrogen receptor and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading. Biology of Sex Differences 5:14, 2014.
48. Tran J, Magenau A, Rodriguez M, Rentero C, Royo T, Enrich C, Thomas SR, Grewal T, Gaus K. Activation of endothelial nitric oxide (eNOS) occurs through different membrane domains in endothelial cells. PLoS One 11(3):e0151556, 2016.
49. Wang XL, Fu A, Spiro C, Lee HC. Proteomic analysis of vascular endothelial cells-effects of laminar shear stress and high glucose. J Proteomics Bioinform 2:445, 2009.
50. Wang P, Guan PP, Wang T, Yu X, Guo JJ, Konstantopoulos K, Wang ZY. Interleukin-1β and cyclic AMP mediate the invasion of sheared chondrosarcoma cells via a matrix metalloproteinase-1-dependent mechanism. Biochim Biophys Acta 1843(5):923-33, 2014.
51. Wang P, Zhu F, Konstantopoulos K. The antagonistic actions of endogenous interleukin-1β and 15-deoxy-12,14-prostaglandin J2 regulate the temporal synthesis of matrix metalloproteinase-9 in sheared chondrocytes. J Biol Chem 287(38):31877-93, 2012.
52. Wang P, Zhu F, Lee NH, Konstantopoulos K. Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-B activation. J Biol Chem 285(32):24793-24804, 2010.
53. Wu L, Gao X, Brown RC, Heller S, O'Neil RG. Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293(5):F1699-F1713, 2007.
54. Yang B, Rizzo V. Shear stress activates eNOS at the endothelial apical surface through β1 containing integrins and caveolae. Cell Mol Bioeng 6(3):346-354, 2013.
55. Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE. Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280(21):20680-20690, 2005.
56. Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem 278(47):47275-47280, 2003.
57. Yoo PS, Mulkeen AL, Dardik A, Cha CH. A novel in vitro model of lymphatic metastasis from colorectal cancer. J Surg Res 143(1):94-98, 2007.
58. Zhang J, Zhang HY, Zhang M, Qiu ZY, Wu YP, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 22(6):822-30, 2014.
59. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26(12):4539-45, 2006.
60. Zhu F, Wang P, Kontrogianni-Konstantopoulos A, Konstantopoulos K. Prostaglandin (PG)D(2) and 15-deoxy-(12,14)-PGJ(2), but not PGE(2), mediate shear-induced chondrocyte apoptosis via protein kinase A-dependent regulation of polo-like kinases. Cell Death Differ 17(8):1325-1334, 2010.
61. Zhu F, Wang P, Lee NH, Goldring MB, Konstantopoulos K. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS One 5(12):e15174, 2010.
APPLICATION OF CULTURE PLATES AND SLIDES
1. Aga M, Bradley JM, Wanchu R, Yang YF, Acott TS, Keller KE. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci 55(9):5497-509, 2014.
2. Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF. Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem 74(5):1951-1960, 2000.
77
3. Ahmed SM, Weber JT, Liang S, Willoughby KA, Sitterding HA, Rzigalinski BA, Ellis EF. NMDA receptor activation contributes to a portion of the decreased mitochondrial membrane potential and elevated intracellular free calcium in strain-injured neurons. Journal of Neurotrauma 19(12):1619-1629, 2002.
4. Alenghat FJ, Tytell JD, Thodeti CK, Derrien A, Ingber DE. Mechanical control of cAMP signaling through integrins is mediated by the heterotrimeric Gs protein. J Cell Biochem 106(4):529-538, 2009.
5. Arold SP, Bartolák-Suki E, Suki B. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am J Physiol Lung Cell Mol Physiol 296(4):L574-581, 2009.
6. Arold SP, Wong JY, Suki B. Design of a new stretching apparatus and the effects of cyclic strain and substratum on mouse lung epithelial-12 cells. Ann Biomed Eng 35(7):1156-1164, 2007.
7. Argento G, de Jonge N, Söntjens SH, Oomens CW, Bouten CV, Baaijens FP. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues. Biomech Model Mechanobiol 14(3):603-13, 2015.
8. Arulmoli J, Pathak MM, McDonnell LP, Nourse JL, Tombola F, Earthman JC, Flanagan LA. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci Rep 5:8499, 2015.
9. Augustine C, Cepinskas G, Fraser DD. Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Neuroscience 274:1-10, 2014.
10. Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja VS, Thorpe C, Rogers H, Dunn B, Frey AS, Billings MJ, Sholar CA, Hermundstad A, Kumar C, VandeVord PJ, Rzigalinski BA. Cerium oxide nanoparticles improve outcome after in vitro and in vivo mild traumatic brain injury. J Neurotrauma 2016 Nov 2. [Epub ahead of print].
11. Belete HA, Godin LM, Stroetz RW, Hubmayr RD. Experimental models to study cell wounding and repair. Cell Physiol Biochem 25(1):71-80, 2010.
12. Bell JD, Ai J, Chen Y, Baker AJ. Mild in vitro trauma induces rapid Glur2 endocytosis, robustly augments calcium permeability and enhances susceptibility to secondary excitotoxic insult in cultured Purkinje cells. Brain 130(Pt 10):2528-2542, 2007.
13. Bonacci JV, Harris T, Wilson JW, Stewart AG. Collagen-induced resistance to glucocorticoid anti-mitogenic actions: a potential explanation of smooth muscle hyperplasia in the asthmatic remodelled airway. British Journal of Pharmacology 138(7):1203-1206, 2003.
14. Bonacci JV, Schuliga M, Harris T, Stewart AG. Collagen impairs glucocorticoid actions in airway smooth muscle through integrin signalling. Br J Pharmacol 149(4):365-373, 2006.
15. Boudreault F, Tschumperlin DJ. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases. Am J Respir Cell Mol Biol 43(1):64-73, 2010.
16. Chen SC, Wang BW, Wang DL, Shyu KG. Hypoxia induces discoidin domain receptor-2 expression via the p38 pathway in vascular smooth muscle cells to increase their migration. Biochem Biophys Res Commun 374(4):662-667, 2008.
17. Chen T, Willoughby KA, Ellis EF. Group I metabotropic receptor antagonism blocks depletion of calcium stores and reduces potentiated capacitative calcium entry in strain-injured neurons and astrocytes. Journal of Neurotrauma 21(3):271-281, 2004.
18. Collins NT, Cummins PM, Colgan OC, Ferguson G, Birney YA, Murphy RP, Meade G, Cahill PA. Cyclic strain–mediated regulation of vascular endothelial occludin and ZO-1. Influence on intercellular tight junction assembly and function. Arterioscler Thromb Vasc Biol 26:62-68, 2006.
19. Comeau ES, Hocking DC, Dalecki D. Ultrasound patterning technologies for studying vascular morphogenesis in 3D. J Cell Sci 130(1):232-242, 2017.
20. Das SK, Wang W, Zhabyeyev P, Basu R, McLean B, Fan D, Parajuli N, DesAulniers J, Patel VB, Hajjar RJ, Dyck JR, Kassiri Z, Oudit GY. Iron-overload injury and cardiomyopathy in acquired and genetic models is attenuated by resveratrol therapy. Sci Rep 5:18132, 2015.
21. Dunn I, Pugin J. Mechanical ventilation of various human lung cells in vitro: identification of the macrophage as the main producer of inflammatory mediators. Chest 116(1 Suppl):95S-97S, 1999.
22. Ellis EF, Willoughby KA, Sparks SA, Chen T. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 101(6):1463-1470, 2007.
23. Endlich N, Kress KR, Reiser J, Uttenweiler D, Kriz W, Mundel P, Endlich K. Podocytes respond to mechanical stress in vitro. J Am Soc Nephrol 12(3):413-22, 2001.
78
24. Endlich N, Sunohara M, Nietfeld W, Wolski EW, Schiwek D, Kränzlin B, Gretz N, Kriz W, Eickhoff H, Endlich K. Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J 16(13):1850-1852, 2002.
25. Floyd CL, Gorin FA, Lyeth BG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51(1):35-46, 2005.
26. Floyd CL, Rzigalinski BA, Sitterding HA, Willoughby KA, Ellis EF. Antagonism of group I metabotropic glutamate receptors and PLC attenuates increases in inositol trisphosphate and reduces reactive gliosis in strain-injured astrocytes. Journal of Neurotrauma 21(2):205-216, 2004.
27. Floyd CL, Rzigalinski BA, Weber JT, Sitterding HA, Willoughby KA, Ellis EF. Traumatic injury of cultured astrocytes alters inositol (1,4,5)-trisphosphate-mediated signaling. Glia 33(1):12-23, 2001.
28. Fudge D, Russell D, Beriault D, Moore W, Lane EB, Vogl AW. The intermediate filament network in cultured human keratinocytes is remarkably extensible and resilient. PLoS One 3(6):e2327, 2008.
29. Gavara N, Roca-Cusachs P, Sunyer R, Farré R, Navajas D. Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Biophys J 95(1):464-471, 2008.
30. Goforth PB, Ellis EF, Satin LS. Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 19(17):7367-7374, 1999.
31. Goforth PB, Ellis EF, Satin LS. Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway. Journal of Neurotrauma 21(6):719-732, 2004.
32. González-Avalos P, Mürnseer M, Deeg J, Bachmann A, Spatz J, Dooley S, Eils R, Gladilin E. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework. J Microsc 266(2):115-125, 2017.
33. Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, Krishnegowda V, Rosenblatt J. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543(7643):118-121, 2017.
34. Hampton C, Webster GD, Rzigalinski B, Gabler HC. Mechanical properties of polytetraflouroethylene elastomer membrane for dynamic cell culture testing. Biomed Sci Instrum 44:105-110, 2008.
35. Hasel C, Durr S, Bauer A, Heydrich R, Bruderlein S, Tambi T, Bhanot U, Moller P. Pathologically elevated cyclic hydrostatic pressure induces CD95-mediated apoptotic cell death in vascular endothelial cells. Am J Physiol Cell Physiol 289(2):C312-C322, 2005.
36. Hossain MZ, Shea E, Daneshtalab M, Weber JT. Chemical analysis of extracts from newfoundland berries and potential neuroprotective effects. Antioxidants (Basel) 5(4):E36, 2016.
37. Kamineni S, Wani Z, Luo Z, Ruriko Y, An K. Chondrocyte response to tensile and compressive cyclic loading modalities. Journal of Musculoskeletal Research 15(1):1250006, 2012.
38. Kao CQ, Goforth PB, Ellis EF, Satin LS. Potentiation of GABA(A) currents after mechanical injury of cortical neurons. Journal of Neurotrauma 21(3):259-270, 2004.
39. Keller KE, Sun YY, Vranka JA, Hayashi L, Acott TS. Inhibition of hyaluronan synthesis reduces versican and fibronectin levels in trabecular meshwork cells. PLoS One 7(11):e48523, 2012.
40. Keller KE, Yang YF, Sun YY, Sykes R, Acott TS, Wirtz MK. Ankyrin repeat and suppressor of cytokine signaling box containing protein-10 is associated with ubiquitin-mediated degradation pathways in trabecular meshwork cells. Mol Vis 19:1639-55, 2013.
41. Keller KE, Yang YF, Sun YY, Sykes R, Gaudette ND, Samples JR, Acott TS, Wirtz MK. Interleukin-20 receptor expression in the trabecular meshwork and its implication in glaucoma. J Ocul Pharmacol Ther 30(2-3):267-76, 2014.
42. Khadre A, El-Gendy R, Goudouri OM. Scaffolds’ characterisation for a multilayered construct simulating the tooth periodntium. European Cells and Materials 28(4):123, 2014.
43. Kito H, Chen EL, Wang X, Ikeda M, Azuma N, Nakajima N, Gahtan V, Sumpio BE. Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. J Appl Physiol 89(6):2391-2400, 2000.
44. Kizer N, Guo XL, Hruska K. Reconstitution of stretch-activated cation channels by expression of the -subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci U S A 94(3):1013-1018, 1997.
45. Konermann A, Jäger A, Held SA, Brossart P, Schmöle A. In vivo and in vitro identification of endocannabinoid signaling in periodontal tissues and their potential role in local pathophysiology. Cell Mol Neurobiol 2017 Mar 14. doi: 10.1007/s10571-017-0482-4. [Epub ahead of print]
46. Krüger M, Sachse C, Zimmermann WH, Eschenhagen T, Klede S, Linke WA. Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/ AKT pathway. Circ Res 102(4):439-447, 2008.
79
47. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol 153(5):1133-1140, 2001.
48. Lamb RG, Harper CC, McKinney JS, Rzigalinski BA, Ellis EF. Alterations in phosphatidylcholine metabolism of stretch-injured cultured rat astrocytes. J Neurochem 68(5):1904-1910, 1997.
49. Lapanantasin S, Chongthammakun S, Floyd CL, Berman RF. Effects of 17-estradiol on intracellular calcium changes and neuronal survival after mechanical strain injury in neuronal-glial cultures. Synapse 60(5):406-410, 2006.
50. Lau JJ, Wang RM, Black LD 3rd. Development of an arbitrary waveform membrane stretcher for dynamic cell culture. Ann Biomed Eng 42(5):1062-73, 2014.
51. Lea PM, Custer SJ, Stoica BA, Faden AI. Modulation of stretch-induced enhancement of neuronal NMDA receptor current by mGluR1 depends upon presence of glia. Journal of Neurotrauma 20(11):1233-1249, 2003.
52. Lea PM, Custer SJ, Vicini S, Faden AI. Neuronal and glial mGluR5 modulation prevents stretch-induced enhancement of NMDA receptor current. Pharmacology Biochemistry and Behavior 73(2):287-298, 2002.
53. Lehnich H, Simm A, Weber B, Bartling B. Development of a cyclic multi-axial strain cell culture device. Biomed Tech (Berl) 57(Suppl 1):677-680, 2012.
54. Lewko B, Bryl E, Witkowski JM, Latawiec E, Angielski S, Stepinski J. Mechanical stress and glucose concentration modulate glucose transport in cultured rat podocytes. Nephrol Dial Transplant 20(2):306-311, 2005.
55. Lewko B, Endlich N, Kriz W, Stepinski J, Endlich K. C-type natriuretic peptide as a podocyte hormone and modulation of its cGMP production by glucose and mechanical stress. Kidney International 66(3):1001-1008, 2004.
56. Lewko B, Waszkiewicz A, Maryn A, Gołos M, Latawiec E, Daca A, Witkowski JM, Angielski S, Stępiński J. Dexamethasone-dependent modulation of cyclic GMP synthesis in podocytes. Mol Cell Biochem 409(1-2):243-53, 2015.
57. Li R, Wei M, Shao J. Effects of verapamil on the immediate-early gene expression of bone marrow mesenchymal stem cells stimulated by mechanical strain in vitro. Med Sci Monit Basic Res 19:68-75, 2013.
58. Liebau MC, Lang D, Bohm J, Endlich N, Bek MJ, Witherden I, Mathieson PW, Saleem MA, Pavenstadt H, Fischer KG. Functional expression of the renin-angiotensin system in human podocytes. Am J Physiol Renal Physiol 290(3):F710-F719, 2006.
59. Majumdar A, Arold SP, Bartolák-Suki E, Parameswaran H, Suki B. Jamming dynamics of stretch-induced surfactant release by alveolar type II cells. J Appl Physiol (1985) 112(5):824-31, 2012.
60. Mao Y, Su J, Lei L, Meng L, Qi Y, Huo Y, Tang C. Adrenomedullin and adrenotensin increase the transcription of regulator of G‑protein signaling 2 in vascular smooth muscle cells via the cAMP‑dependent and PKC pathways. Mol Med Rep 9(1):323-7, 2014.
61. Maul TM, Hamilton DW, Nieponice A, Soletti L, Vorp DA. A new experimental system for the extended application of cyclic hydrostatic pressure to cell culture. J Biomech Eng 129(1):110-6, 2007.
62. McKinney JS, Willoughby KA, Liang S, Ellis EF. Stretch-induced injury of cultured neuronal, glial, and endothelial cells. Effect of polyethylene glycol-conjugated superoxide dismutase. Stroke 27(5):934-940, 1996.
63. Mercado KP, Helguera M, Hocking DC, Dalecki D. Estimating cell concentration in three-dimensional engineered tissues using high frequency quantitative ultrasound. Ann Biomed Eng 42(6):1292-304, 2014.
64. Mercado KP, Langdon J, Helguera M, McAleavey SA, Hocking DC, Dalecki D. Scholte wave generation during single tracking location shear wave elasticity imaging of engineered tissues. J Acoust Soc Am 138(2):EL138-44, 2015.
65. Neary JT, Kang Y, Tran M, Feld J. Traumatic injury activates protein kinase B/Akt in cultured astrocytes: role of extracellular ATP and P2 purinergic receptors. Journal of Neurotrauma 22(4):491-500, 2005.
66. Neary JT, Kang Y, Willoughby KA, Ellis EF. Activation of extracellular signal-regulated kinase by stretch-induced injury in astrocytes involves extracellular ATP and P2 purinergic receptors. J Neurosci 23(6):2348-2356, 2003.
67. Onodera K, Takahashi I, Sasano Y, Bae JW, Mitani H, Kagayama M, Mitani H. Stepwise mechanical stretching inhibits chondrogenesis through cell-matrix adhesion mediated by integrins in embryonic rat limb-bud mesenchymal cells. European Journal of Cell Biology 84(1):45-58, 2005.
68. Pugin J, Dunn I, Jolliet P, Tassaux D, Magnenat JL, Nicod LP, Chevrolet JC. Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol Lung Cell Mol Physiol 275:L1040-L1050, 1998.
80
69. Putnam AJ, Cunningham JJ, Pillemer BBL, Mooney DJ. External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. Am J Physiol Cell Physiol 284(3):C627-C639, 2003.
70. Putnam AJ, Schultz K, Mooney DJ. Control of microtubule assembly by extracellular matrix and externally applied strain. Am J Physiol Cell Physiol 280(3):C556-C564, 2001.
71. Quaglino A, Salierno M, Pellegrotti J, Rubinstein N, Kordon EC. Mechanical strain induces involution-associated events in mammary epithelial cells. BMC Cell Biol 10:55, 2009.
72. Rachmany L, Tweedie D, Rubovitch V, Li Y, Holloway HW, Kim DS, Ratliff WA, Saykally JN, Citron BA, Hoffer BJ, Greig NH, Pick CG. Exendin-4 attenuates blast traumatic brain injury induced cognitive impairments, losses of synaptophysin and in vitro TBI-induced hippocampal cellular degeneration. Sci Rep 7(1):3735, 2017.
73. Rana OR, Zobel C, Saygili E, Brixius K, Gramley F, Schimpf T, Mischke K, Frechen D, Knackstedt C, Schwinger RH, Schauerte P, Saygili E. A simple device to apply equibiaxial strain to cells cultured on flexible membranes. Am J Physiol Heart Circ Physiol 294(1):H532-540, 2008.
74. Rápalo G, Herwig JD, Hewitt R, Wilhelm KR, Waters CM, Roan E. Live cell imaging during mechanical stretch. J Vis Exp (102):e52737, 2015.
75. Rauch C, Loughna PT. Cyclosporin-A inhibits stretch-induced changes in myosin heavy chain expression in C2C12 skeletal muscle cells. Cell Biochem Funct 24(1):55-61, 2006.
76. Rauch C, Loughna PT. Static stretch promotes MEF2A nuclear translocation and expression of neonatal myosin heavy chain in C2C12 myocytes in a calcineurin- and p38-dependent manner. Am J Physiol Cell Physiol 288(3):C593-C605, 2005.
77. Reimann S, Rath-Deschner B, Deschner J, Keilig L, Jäger A, Bourauel C. Development of an experimental device for the application of static and dynamic tensile strain on cells. 4th European Conference of the International Federation for Medical and Biological Engineering 22:2019-2022, 2009.
78. Rzigalinski BA, Liang S, McKinney JS, Willoughby KA, Ellis EF. Effect of Ca2+ on in vitro astrocyte injury. J Neurochem 68(1):289-296, 1997.
79. Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF. Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem 70(6):2377-2385, 1998.
80. Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front Cell Neurosci 9:323, 2015.
81. Salvador E, Neuhaus W, Foerster C. Stretch in brain microvascular endothelial cells (cEND) as an in vitro traumatic brain injury model of the blood brain barrier. J Vis Exp (80):e50928, 2013.
82. Sawada Y, Suda M, Yokoyama H, Kanda T, Sakamaki T, Tanaka S, Nagai R, Abe S, Takeuchi T. Stretch-induced hypertrophic growth of cardiocytes and processing of brain-type natriuretic peptide are controlled by proprotein-processing endoprotease furin. J Biol Chem 272(33):20545-20554, 1997.
83. Saykally JN, Hatic H, Keeley KL, Jain SC, Ravindranath V, Citron BA. Withania somnifera Extract Protects Model Neurons from In Vitro Traumatic Injury. Cell Transplant 2016 Nov 18. doi: 10.3727/096368916X693770. [Epub ahead of print].
84. Schordan S, Schordan E, Endlich K, Endlich N. V-integrins mediate the mechanoprotective action of osteopontin in podocytes. Am J Physiol Renal Physiol 300(1):F119-F132, 2011.
85. Schordan E, Welsch S, Rothhut S, Lambert A, Barthelmebs M, Helwig JJ, Massfelder T. Role of parathyroid hormone-related protein in the regulation of stretch-induced renal vascular smooth muscle cell proliferation. J Am Soc Nephrol 15(12):3016-3025, 2004.
86. Shoham N, Gottlieb R, Sharabani-Yosef O, Zaretsky U, Benayahu D, Gefen A. Static mechanical stretching accelerates lipid production in 3T3-L1 adipocytes by activating the MEK signaling pathway. Am J Physiol Cell Physiol 302(2):C429-41, 2012.
87. Slemmer JE, Matser EJ, De Zeeuw CI, Weber JT. Repeated mild injury causes cumulative damage to hippocampal cells. Brain 125(Pt 12):2699-2709, 2002.
88. Slemmer JE, Zhu C, Landshamer S, Trabold R, Grohm J, Ardeshiri A, Wagner E, Sweeney MI, Blomgren K, Culmsee C, Weber JT, Plesnila N. Causal role of apoptosis-inducing factor for neuronal cell death following traumatic brain injury. Am J Pathol 173(6):1795-1805, 2008.
89. Sowa G, Agarwal S. Motion exerts a protective effect on intervertebral discs. American Journal of Physical Medicine & Rehabilitation 85(3):246-247, 2006.
90. Sowa G, Agarwal S. Cyclic tensile stress exerts a protective effect on intervertebral disc cells. American Journal of Physical Medicine & Rehabilitation 87(7):537-544, 2008.
81
91. Stroetz RW, Vlahakis NE, Walters BJ, Schroeder MA, Hubmayr RD. Validation of a new live cell strain system: characterization of plasma membrane stress failure. J Appl Physiol 90(6):2361-2370, 2001.
92. Takahashi I, Onodera K, Sasano Y, Mitzoguchi I, Bae JW, Mitani H, Kagayama M, Mitani H. Effect of stretching on gene expression of β1 integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions. European Journal of Cell Biology 82(4):182-192, 2003.
93. Tamada M, Sheetz MP, Sawada Y. Activation of a signaling cascade by cytoskeleton stretch. Dev Cell 7:709-718, 2004.
94. Tavalin SJ, Ellis EF, Satin LS. Inhibition of the electrogenic Na pump underlies delayed depolarization of cortical neurons after mechanical injury or glutamate. J Neurophysiol 77:632-638, 1997.
95. Tavalin SJ, Ellis EF, Satin LS. Mechanical perturbation of cultured cortical neurons reveals a stretch-induced delayed depolarization. J Neurophysiol 74(6):2767-2773, 1995.
96. Tellios N, Belrose JC, Tokarewicz AC, Hutnik C, Liu H, Leask A, Motolko M, Iijima M, Parapuram SK. TGF-β induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep 7(1):812, 2017.
97. Toyoda T, Matsumoto H, Fujikawa K, Saito S, Inoue K. Tensile load and the metabolim of anterior cruciate ligament cells. Clinical Orthopaedics & Related Research 353:247-255, 1998.
98. Toyoda T, Saito S, Inokuchi S, Yabe Y. The effects of tensile load on the metabolism of cultured chondrocytes. Clin Orthop Relat Res (359):221-228, 1999.
99. Tran MD, Neary JT. Purinergic signaling induces thrombospondin-1 expression in astrocytes. PNAS 103(24):9321–9326, 2006.
100. Tran MD, Wanner IB, Neary JT. Purinergic receptor signaling regulates N-cadherin expression in primary astrocyte cultures. J Neurochem 105(1):272-86, 2008.
101. Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, Fredberg JJ. Universal physical responses to stretch in the living cell. Nature 447(7144):592-595, 2007.
102. Trepat X, Grabulosa M, Puig F, Maksym GN, Navajas D, Farre R. Viscoelasticity of human alveolar epithelial cells subjected to stretch. Am J Physiol Lung Cell Mol Physiol 287(5):L1025-L1034, 2004.
103. Trepat X, Puig F, Gavara N, Fredberg JJ, Farre R, Navajas D. Effect of stretch on structural integrity and micromechanics of human alveolar epithelial cell monolayers exposed to thrombin. Am J Physiol Lung Cell Mol Physiol 290(6):L1104-L1110, 2006.
104. Tyurina YY, Nylander KD, Mirnics ZK, Portugal C, Yan C, Zaccaro C, Saragovi HU, Kagan VE, Schor NF. The intracellular domain of p75NTR as a determinant of cellular reducing potential and response to oxidant stress. Aging Cell 4(4):187-196, 2005.
105. Upton ML, Chen J, Setton LA. Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res 24(7):1562-1570, 2006.
106. Vincent F, Duquesnes N, Christov C, Damy T, Samuel JL, Crozatier B. Dual level of interactions between calcineurin and PKC- in cardiomyocyte stretch. Cardiovasc Res 71(1):97-107, 2006.
107. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 280(5):L938-L946, 2001.
108. Wada S, Kanzaki H, Narimiya T, Nakamura Y. Novel device for application of continuous mechanical tensile strain to mammalian cells. Biol Open 6(4):518-524, 2017.
109. Wagner AH, Schroeter MR, Hecker M. 17-estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 15(12):2121-2130, 2001.
110. Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 595(1):79-91, 2017.
111. Wang D, Taboas JM, Tuan RS. PTHrP overexpression partially inhibits a mechanical strain-induced arthritic phenotype in chondrocytes. Osteoarthritis Cartilage 19(2):213-221, 2011.
112. Weber B, Bader N, Lehnich H, Simm A, Silber RE, Bartling B. Microarray-based gene expression profiling suggests adaptation of lung epithelial cells subjected to chronic cyclic strain. Cell Physiol Biochem 33(5):1452-66, 2014.
113. Weber JT, Rzigalinski BA, Ellis EF. Calcium responses to caffeine and muscarinic receptor agonists are altered in traumatically injured neurons. Journal of Neurotrauma 19(11):1433-1443, 2002.
114. Weber JT, Rzigalinski BA, Ellis EF. Traumatic injury of cortical neurons causes changes in intracellular calcium stores and capacitative calcium influx. J Biol Chem 276(3):1800-1807, 2001.
115. Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF. Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 26(6):289-299, 1999.
82
116. Willoughby KA, Kleindienst A, Muller C, Chen T, Muir JK, Ellis EF. S100B protein is released by in vitro trauma and reduces delayed neuronal injury. J Neurochem 91(6):1284-1291, 2004.
117. Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One 9(11):e113397, 2014.
118. Xu Q, Schett G, Li C, Hu Y, Wick G. Mechanical stress-induced heat shock protein 70 expression in vascular smooth muscle cells is regulated by Rac and Ras small G proteins but not mitogen-activated protein kinases. Circ Res 86(11):1122-1128, 2000.
119. Xu Z, Buckley MJ, Evans CH, Agarwal S. Cyclic tensile strain acts as an antagonist of IL-1 actions in chondrocytes. J Immunol 165(1):453-60, 2000.
120. Xu Z, Liu Y, Yang D, Yuan F, Ding J, Chen H, Tian H. Sesamin protects SH-SY5Y cells against mechanical stretch injury and promoting cell survival. BMC Neurosci 18(1):57, 2017.
121. Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 and transforming growth factor-1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology 7(2):103-109, 2002.
122. Yan C, Liang Y, Nylander KD, Schor NF. TrkA as a life and death receptor: receptor dose as a mediator of function. Cancer Res 62:4867-4875, 2002.
123. You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122(4):387-93, 2000.
124. Zhan M, Jin B, Chen SE, Reecy JM, Li YP. TACE release of TNF- mediates mechanotransduction-induced activation of p38 MAPK and myogenesis. J Cell Sci 120(Pt 4):692-701, 2007.
125. Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 141(12):539-551, 1998.
126. Zou K, De Lisio M, Huntsman HD, Pincu Y, Mahmassani Z, Miller M, Olatunbosun D, Jensen T, Boppart MD. Laminin-111 improves skeletal muscle stem cell quantity and function following eccentric exercise. Stem Cells Transl Med 3(9):1013-22, 2014.
CUSTOMER-MODIFIED UNITS
1. Boerboom RA, Rubbens MP, Driessen NJ, Bouten CV, Baaijens FP. Effect of strain magnitude on the tissue properties of engineered cardiovascular constructs. Annals of Biomedical Engineering 36(2):244–253, 2008.
2. Fermor B, Haribabu B, Weinberg JB, Pisetsky, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochemical and Biophysical Research Communications 285:806-810, 2001.
3. Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of the nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 13:935-941, 2005.
4. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 9(4):729-737, 2001.
5. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792-798, 2002.
6. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481-487, 2001.
7. Fisher DD, Cyr RJ. Mechanical forces in plant growth and development. Gravit Space Biol Bull 13(2):67-73, 2000.
8. Giunti S, Pinach S, Arnaldi L, Viberti G, Perin PC, Camussi G, Gruden G. The MCP-1/CCR2 system has direct proinflammatory effects in human mesangial cells. Kidney Int 69(5):856-863, 2006.
9. Hasel C, Durr S, Bruderlein S, Melzner I, Moller P. A cell-culture system for long-term maintenance of elevated hydrostatic pressure with the option of additional tension. J Biomechanics 35(5):579-584, 2002.
83
10.Lee JM, Kim MG, Byun JH, Kim GC, Ro JH, Hwang DS, Choi BB, Park GC, Kim UK. The effect ofbiomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells. MaxillofacPlast Reconstr Surg 39(1):7, 2017.
11.Meng F, Suchyna TM, Sachs F. A fluorescence energy transfer-based mechanical stress sensor for specificproteins in situ. FEBS J 275(12):3072-3087, 2008.
12.Park SA, Kim IA, Lee YJ, Shin JW, Kim CR, Kim JK, Yang YI, Shin JW. Biological responses ofligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected tomechanical stimuli. J Biosci Bioeng 102(5):402-412, 2006.
13.Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on theinduction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis Cartilage 13:1092-1099, 2005.
14.Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MM, van Assen HC, TerHaar Romeny BM,Baaijens FP, Bouten CV. Quantification of the temporal evolution of collagen orientation in mechanicallyconditioned engineered cardiovascular tissues. Ann Biomed Eng 37(7):1263-1272, 2009.
15.Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscalexplants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308-313, 2003.
16.Tobita K, Garrison JB, Keller BB. Differential effects of cyclic stretch on embryonic ventricularcardiomyocyte and non-cardiomyocyte orientation. In: Cardiovascular Development and CongenitalMalformations: Molecular & Genetic Mechanisms, Edited by Artman M, Benson DW, Srivastava D, NakazawaM. Blackwell Futura Publishing:177-179, 2005.
17.Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscalcell gene expression. J Orthop Res 21(6):963-969, 2003.