世联博研(北京)科技有限公司

化工仪器网初级5

收藏

flexcell细胞压力仪文献

时间:2020-02-19      阅读:896

flexcell细胞压力仪典型应用文献:

Bougault C, Aubert-Foucher E, Paumier A, Perrier-Groult E, Huot L, Hot D, Duterque-Coquillaud M, Mallein-Gerin F. Dynamic compression of chondrocyte-agarose constructs reveals new candidate mechanosensitive genes. PLoS One 7(5):e36964, 2012.
2. Bougault C, Paumier A, Aubert-Foucher E, Mallein-Gerin F. Molecular analysis of chondrocytes cultured in agarose in response to dynamic compression. BMC Biotechnol 8:71, 2008.
3. Chen X, Guo J, Yuan Y, Sun Z, Chen B, Tong X, Zhang L, Shen C, Zou J. Cyclic compression stimulates osteoblast differentiation via activation of the Wnt/β-catenin signaling pathway. Molecular Medicine Reports 15(5):2890-2896, 2017.
4. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The effect of mechanical stimulation on mineralization in differentiating osteoblasts in collagen-I scaffolds. Tissue Eng Part A 20(23-24):3142-3153, 2014.
5. Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 21(9-10):1720-32, 2015.
6. Fermor B, Haribabu B, Weinberg JB, Pisetsky, Guilak F. Mechanical stress and nitric oxide influence leukotriene production in cartilage. Biochemical and Biophysical Research Communications 285:806–810, 2001.

7. Fermor B, Weinberg JB, Pisetsky DS, Guilak F. The influence of oxygen tension on the induction of the nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 13:935-941, 2005.
8. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Banes AJ, Guilak F. The effects of static and intermittent compression on nitric oxide production in articular cartilage explants. J Orthop Res 9(4):729-737, 2001.
9. Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Fink C, Guilak F. Induction of cyclooxygenase-2 by mechanical stress through a nitric oxide-regulated pathway. Osteoarthritis Cartilage 10:792–798, 2002.
10. Fink C, Fermor B, Weinberg JB, Pisetsky DS, Misukonis MA, Guilak F. The effect of dynamic mechanical compression on nitric oxide production in the meniscus. Osteoarthritis Cartilage 9(5):481-487, 2001.
11. Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. Tissue Eng 12(6):1527-1537, 2006.
12. Glaeser JD, Salehi K, Kanim LE, NaPier Z, Kropf MA, Cuellar J, Sheyn D, Bae HW. Treatment with the NFB inhibitor reduces overloading-induced MMP expression in human nucleus pulposus cells. The Spine Journal 17(10):S127, 2017.
13. Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, Jacques C. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Research & Therapy 8:R135, 2006.
14. Graff RD, Lazarowski ER, Banes AJ, Lee GM. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43(7):1571-1579, 2000.
15. Hamid T, Xu Y, Ismahil MA, Li Q, Jones SP, Bhatnagar A, Bolli R, Prabhu SD. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 311(5):H1189-H1201, 2016.
16. Hara M, Nakashima M, Fujii T, Uehara K, Yokono C, Hashizume R, Nomura Y. Construction of collagen gel scaffolds for mechanical stress analysis. Biosci Biotechnol Biochem 78(3):458-61, 2014.
17. Hazenbiller O, Duncan NA, Krawetz RJ. Reduction of pluripotent gene expression in murine embryonic stem cells exposed to mechanical loading or Cyclo RGD peptide. BMC Cell Biol 18(1):32, 2017. doi: 10.1186/s12860-017-0148-6.
18. Hennerbichler A, Fermor B, Hennerbichler, Weinberg JB, Guilak F. Regional differences in prostaglandin E2 and nitric oxide production in the knee meniscus in response to dynamic compression. Biochemical and Biophysical Research Communications 358:1047–1053, 2007.
19. Huang D, Liu YP, Huang YJ, Xie YF, Shen KH, Zhang DW, Mou Y. Mechanical compression up-regulates MMP9 through SMAD3 but not SMAD2 modulation in hypertrophic scar fibroblasts. Connect Tissue Res 55(5-6):391-6, 2014.
20. Kuroki K, Cook JL, Stoker AM, Turnquist SE, Kreeger JM, Tomlinson JL. Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression. Osteoarthritis Cartilage 13:225-234, 2005.
21. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.
22. Li D, Lu Z, Xu Z, Ji J, Zheng Z, Lin S, Yan T. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep 36(4), 2016. pii: e00355.
23. Li X, Dong J, Liu C, Wang X, An M, Chen W. Contributions of intermittent cyclic compression to proteoglycans synthesis and mechanical properties of knee articular cartilaginous tissue formed in vitro. Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference 4:1655-1658, 2010.
24. Maxson S, Orr D, Burg K. Bioreactors for tissue engineering. Tissue Eng 179-197, 2011.
25. Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, Hamanishi C. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res 59(6):471-477, 2010.
26. Nettelhoff L, Grimm S, Jacobs C, Walter C, Pabst AM, Goldschmitt J, Wehrbein H. Influence of mechanical compression on human periodontal ligament fibroblasts and osteoblasts. Clin Oral Investig 20(3):621-9, 2016.
27. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther 16(1):R16, 2014.

28. Piscoya JL, Fermor B, Kraus VB, Stabler TV, Guilak F. The influence of mechanical compression on the induction of osteoarthritis-related biomarkers in articular cartilage explants. Osteoarthritis Cartilage 13:1092-1099, 2005.
29. Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the periodontal ligament in hyaluronan-gelatin-type I collagen constructs: upregulation of apoptosis and alterations in gene expression by cyclic compressive strain. Tissue Eng Part A 21(3-4):518-29, 2015.
30. Sanchez C, Gabay O, Salvat C, Henrotin YE, Berenbaum F. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage 17(4):473-481, 2009.
31. Sanchez C, Pesesse L, Gabay O, Delcour JP, Msika P, Baudouin C, Henrotin YE. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 64(4):1193-203. 2012.
32. Sharma R, Vinjamaram S, Shah VA, Gupta SK, Chalam KV. The effect of elevated atmospheric pressure on the survival of retinal ganglion cells using Flexcell biopress system. Invest Ophthalmol Vis Sci 44:E-Abstract 152, 2003.
33. Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol 95(1):308-313, 2003.
34. Tomiyama T, Fukuda K, Yamazaki K, Hashimoto K, Ueda H, Mori S, Hamanishi C. Cyclic compression loaded on cartilage explants enhances the production of reactive oxygen species. J Rheumatol 34(3):556-562, 2007.
35. Uehara K, Hara M, Matsuo T, Namiki G, Watanabe M, Nomura Y. Hyaluronic acid secretion by synoviocytes alters under cyclic compressive load in contracted collagen gels. Cytotechnology 67(1):19-26, 2015.
36. Upton ML, Chen J, Guilak F, Setton LA. Differential effects of static and dynamic compression on meniscal cell gene expression. J Orthop Res 21(6):963-969, 2003.
37. Werkmeister E, de Isla N, Netter P, Stoltz JF, Dumas D. Collagenous extracellular matrix of cartilage submitted to mechanical forces studied by second harmonic generation microscopy. Photochem Photobiol 86(2):302-310, 2010.
38. Xu HG, Zhang W, Zheng Q, Yu YF, Deng LF, Wang H, Liu P, Zhang M. Investigating conversion of endplate chondrocytes induced by intermittent cyclic mechanical unconfined compression in three-dimensional cultures. European Journal of Histochemistry 58:2415, 2014.
39. Zhou Q, Yu BH, Liu WC, Wang ZL. BM-MSCs and Bio-Oss complexes enhanced new bone formation during maxillary sinus floor augmentation by promoting differentiation of BM-MSCs. In Vitro Cell Dev Biol Anim 52(7):757-71, 2016.
40. Zhou W, Liu G, Yang S, Ye S. Investigation for effects of cyclical dynamic compression on matrix metabolite and mechanical properties of chondrocytes cultured in alginate. Journal of Hard Tissue Biology 25(4):351-356, 2016.

细胞压力仪,flexcell FX-5000C-

 FX-5000C细胞压力加载培养与实时观察系统(flexcell FX5000 Compression system)现货销售

美国Flexcell公司专注于细胞组织应力(牵张拉伸应力、三维水凝胶牵张拉伸应力、压应力和流体切应力等)加载刺激培养产品的设计和制造,提供*的体外细胞拉应力、压应力和流体剪切应力加载刺激与立体水凝胶支架三维细胞组织牵拉加载培养系统而*。其产品成熟度高、成功应用文献量达4000多篇,国内有包括上海交通大学、复旦大学、同济大学、上海第九医院、中科院力学所、北京大学第三医院、北航生物与医学工程学院、都医科大学、广州医科大学、南方科技大学、福建协和医院、南方医科大学近100家成功高校、医院及基础科研单位使用,无技术风险和使用风险,flexcell体外高通量细胞牵张拉伸力、压应力以及流体剪切力加载培养系统已成为细胞力学体外加载模型的黄金标准,是细胞组织力学研究者的shou选。

FX-5000C细胞压力加载系统(flexcell FX5000 Compression system)——提供样机体验

系统基本原理(正气压交换模式):

利用橡胶密封垫在细胞培养板基底膜与基座之间形成封闭腔,把此密封腔的进、出气管插入二氧化碳培养箱里,把此密封腔放入二氧化碳培养箱,利用封闭腔正气压挤压培养孔里的活塞,进而使活塞和固定台之间的凝胶三维培养物间接受到压力发生形变,通过计算机控制系统调节气体的压力来改变基底膜的形变量。

(注释:压力加载培养板每个培养孔里都有一对活塞或固定台)

亮点

1)该系统对各种组织、三维细胞培养物提供周期性或静态的压力加载;
2)基于柔性膜基底变形、受力均匀;
3)可实时观察细胞、组织在压力作用下的反应;
4)可有选择性地封阻对细胞的应力加载;

5)同时兼备多通道细胞牵拉力加载功能;

6)多达4通道,可4个不同程序同时运行,进行多个不同压力形变率对比实验;

7)同一程序中可以运行多种频率(0.01- 5 Hz),多种振幅和多种波形;
8)更好地控制在超低或超高应力下的波形;
9)多种波形种类:静态波形、正旋波形、心动波形、三角波形、矩形以及各种特制波形;
10)电脑系统对压力加载周期、大小、频率、持续时间智能调控
11)压力范围:0.1 - 14磅,夹在活塞和固定台之间的BioPress细胞培养板可承受正压力的大值为14磅,小值为0.1磅。
12)典型应用科室: 
检测各种三维细胞组织在压力作用下的生物变化、反应, 
例如:软骨组织,椎间盘骨组织,肌腱组织,韧带组织,以及从肌肉,肺,心脏,血管,皮肤,肌腱,韧带,软骨和骨中分离出来的细胞。 
13)在智能电脑主机的控制下,压力传导仪内的密封阀门装置自动调节和控制压力。 
14)系统具有模块化易升级,可扩展拉应力加载、流利切应力加载、三维细胞组织培养功能。具有细胞组织力学所要求的所有类型:牵张拉伸力、压力、流体切应力加载刺激功能。 
15)通过StagePress显微压应力加载设备,实时观察细胞、组织在拉/压应力作用下的反应 
16)FX-5000C细胞组织压应力加载系统组成:

  • 预装FlexSoft®FX-5000软件的的计算机;
  • FX5K™ Compression FlexLink压力加载控制传导仪
  • 一个正压力加载培养腔室基板
  • 一套密封垫片和压力夹固系统
  • 四块六孔细胞压力加载培养板
  • 一根25英尺蓝色Flex In链接管(6.4毫米外径)
  • 一根25英尺无色Flex Out链接管(9.5毫米外径)
  • 一根25英尺牵张拉伸泵链接蓝管(9.5毫米外径)
  • 一台正压泵

     

    细胞组织压应力加载刺激系统总结

    培养物级别

    既能对各种组织培养物提供周期性的或静态的压力加载,又能对各种三维细胞培养物提供周期性的或静态的压力加载

    压应力波形

    系统既能提供压应力加载的静态波形、正旋波形、心动波形、三角波形、矩形波形,又能模拟各种自定义波形, 很好地控制在超低或超高压应力下的波形.

    多通道加载

    同一程序中可以运行多种频率,多种振幅和多种波形,4个不同程序可以同时运行,方便进行不同压力比对比实验;

    压力范围

    0.1 - 14磅

    加载频率

    0.01- 5 Hz

    压应力刺激细胞组织类型

    能对软骨组织、椎间盘骨组织、肌腱组织、韧带组织,以及从肌肉、肺、心脏、血管、皮肤、肌腱、韧带、软骨和骨中分离出来的细胞加压应力刺激;

    观察

    在压应力作用的同时,可以实时观察细胞组织在压应力作用下的反应

    易用性

    使用常规的细胞组织压力加载刺激培养板或培养皿模式进行加载培养,符合常规操作,避免学习难度

上一篇: 细胞压力实验装置应用文献
提示

请选择您要拨打的电话: