品牌
生产厂家厂商性质
所在地
大鼠、小鼠自动活动跑轮,提供了一种简单方便的方法来测量大鼠、小鼠在长时间活动中对化学或环境刺激的反应。
可连接到52600数据接口和加装ANYmaze行为学分析软件,实现对昼夜节律或运动功能等方面的研究。
产品特点
· 适用于大鼠和小鼠
· 易于监控:兼容多种何数据采集系统
· 透明的聚碳酸酯笼子,具有的可见性
· 全不锈钢车轮结构,便于维护
· 可独立工作,也可连接电脑
· 可选配打印机,具有内部存储和电脑软件
· 易于监测,易于维护,多功能接口可同时连接12只笼子
1850型小鼠自动活动跑轮
· 11850型小鼠跑轮采用经典的25cm直径,由不锈钢制成,配有低摩擦特氟隆衬套,运作非常平稳;
· 小鼠在2mm直径的杆上自由跑到,杆子间隔7mm;
· 跑轮装在一个透明的聚碳酸酯笼子里,不锈钢金属盖和含U型颗粒料斗的专用盖锁;
1800型大鼠自主活动跑轮
· 大鼠跑轮的直径为35cm,杆子直径为2mm,杆子的间距为8.8 mm;
· 大鼠笼尺寸:48(h)x32(w)x47(d)cm;
转数计数器
· 大鼠和小鼠活动笼配有磁性开关和LCD计数器,可统计转轮累计转数;
· 根据需要,还可以选择不带计数器的1800-S大鼠自动活动跑轮和1850-S型小鼠自主活动跑轮
· 使用数据线与软件在电脑端进行数据收集;
数据采集
· 配备多功能接口52600,能够同时连接12活动跑轮;
· 可选配专业的分析软件ANYmaze进行管理,进行分析和统计;
选择52600多功能数据采集接口时,不需要计数器,这时需要选择的型号是:1800-S型大鼠自动活动跑轮和1850-S型小鼠自主活动跑轮。
大鼠活动示意图:
参考文献:
1.Reddy, Anita et al. “pH-Gated Succinate Secretion Regulates Muscle Remodeling in Response to Exercise.” Cell vol. 183,1 (2020): 62-75.e17. doi:10.1016/j.cell.2020.08.039
2.Brooks, Simon P, and Stephen B Dunnett. “Tests to assess motor phenotype in mice: a user's guide.” Nature reviews. Neuroscience vol. 10,7 (2009): 519-29. doi:10.1038/nrn2652
3.Videnovic, Aleksandar et al. “'The clocks that time us'--circadian rhythms in neurodegenerative disorders.” Nature reviews. Neurology vol. 10,12 (2014): 683-93. doi:10.1038/nrneurol.2014.206
4.Correia, Jorge C et al. “Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity.” Cell metabolism vol. 33,11 (2021): 2215-2230.e8. doi:10.1016/j.cmet.2021.09.003
5.Mattson, Mark P, and Thiruma V Arumugam. “Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States.” Cell metabolism vol. 27,6 (2018): 1176-1199. doi:10.1016/j.cmet.2018.05.011
6.Islam, Mohammad R et al. “Exercise hormone irisin is a critical regulator of cognitive function.” Nature metabolism vol. 3,8 (2021): 1058-1070. doi:10.1038/s42255-021-00438-z
7.Miletta, Maria Consolata et al. “AgRP neurons control compulsive exercise and survival in an activity-based anorexia model.” Nature metabolism vol. 2,11 (2020): 1204-1211. doi:10.1038/s42255-020-00300-8
8.Brigger, Daniel et al. “Eosinophils regulate adipose tissue inflammation and sustain physical and immunological fitness in old age.” Nature metabolism vol. 2,8 (2020): 688-702. doi:10.1038/s42255-020-0228-3
9.van Veen, J Edward et al. “Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure.” Nature metabolism vol. 2,4 (2020): 351-363. doi:10.1038/s42255-020-0189-6
10.Brocker, David T et al. “Optimized temporal pattern of brain stimulation designed by computational evolution.” Science translational medicine vol. 9,371 (2017): eaah3532. doi:10.1126/scitranslmed.aah3532
11.Janota, Cátia Silva et al. “Shielding of actin by the endoplasmic reticulum impacts nuclear positioning.” Nature communications vol. 13,1 2763. 19 May. 2022, doi:10.1038/s41467-022-30388-3
12.Bobba, Christopher M et al. “Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation.” Nature communications vol. 12,1 289. 12 Jan. 2021, doi:10.1038/s41467-020-20449-w
13.Mridha, Zakir et al. “Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve.” Nature communications vol. 12,1 1539. 9 Mar. 2021, doi:10.1038/s41467-021-21730-2
14.Navas-Olive, Andrea et al. “Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations.” Nature communications vol. 11,1 2217. 5 May. 2020, doi:10.1038/s41467-020-15840-6
15.Nohara, Kazunari et al. “Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge.” Nature communications vol. 10,1 3923. 28 Aug. 2019, doi:10.1038/s41467-019-11926-y
:,
:
yuyanbio
:yuyanbio