中国人民警察大学&清华大学能源化学杂志:CTP电池系统热蔓延特性
时间:2023-07-31 阅读:1188
摘要简介
Structurally compact battery packs significantly improve the driving range of electric vehicles.Technologies like Cell-to-Pack increase energy density by 15%–20%. However, the safety implications of multiple tightly-packed battery cells still require in-depth research. This paper studies thermal runaway propagation behavior in a Cell-to-Pack system and assesses propagation speed relative to other systems. The investigation includes temperature response, extent of battery damage, pack structure deformation, chemical analysis of debris, and other considerations. Results suggest three typical patterns for the thermal runaway propagation process: ordered, disordered, and synchronous. The synchronous propagation pattern displayed the most severe damage, indicating energy release is the largest under the synchronous pattern. This study identifies battery deformation patterns, chemical characteristics of debris, and other observed factors that can both be applied to identify the cause of thermal runaway during accident investigations and help promote safer designs of large battery packs used in large-scale electric energy storage systems.
背景介绍
为解决纯电动汽车的续航里程焦虑问题,需要提高车载动力电池系统的能量密度。在模组和电池包层面,传统的电芯—电池模组—电池包的系统集成结构方式逐渐向无模组(Cell-to-Pack,CTP)结构转变。采用CTP设计思路将电芯以阵列的方式直接装到电池包壳体内,省略了将电芯组成模组的结构,可以使电池包的零部件大幅度减少,进而提升电池包体积利用率。动力电池的去模组化对提升电池包能量密度以及降低成本有积极的作用,有助于车企和电池企业降低制造成本,有望成为未来动力电池技术的主流之一。
2019年9月26日,由北汽新能源与宁德时代携手打造的全球首款CTP电池包在中国蓝谷正式发布。采用全新CTP技术的无模组电池包,相较于目前市场上的传统电池包,体积利用率提高了15%-20%,零部件数量减少40%,生产效率提升了50%,投入应用后大幅降低了动力电池的制造成本。在能量密度上,传统的电池包能量密度平均为140-150Wh·kg-1,而CTP电池包能量密度可达到200Wh·kg-1以上。开展CTP热失控蔓延实验可以为整包级热失控蔓延模型的搭建、标定及事故调查提供数据支撑。目前,尚未对CTP系统的热失控蔓延特征开展系列研究。
实验设计
CTP电池包热失控蔓延实验需要研究热失控蔓延特性、烟气流动规律、电池包内空气域温度变化规律,因此基于单排模组和双排模组的测试结果在电池侧面、液冷板、顶盖内外、空气域等位置共布置K型热电偶118个,烟气传感器4个、VOC传感器12个;传感器编号与分布如图1、2所示。为了减少高温导致的传感器连接线损坏,对传感器连接线作了耐高温处理。为了为新能源汽车事故调查提供数据支撑,还对电池包热失控过程中的喷发颗粒物的理化特性开展了研究,主要测试手段如图3所示。
图1 CTP电池系统参数
图2 CTP电池包传感器布置
结果与讨论
4.1热失控传播特性
图4 CTP电池包热失控蔓延特性
图5 CTP电池包热失控蔓延路径
4.2烟气流动规律
图6 CTP电池包热失控气体扩散规律
4.3电池包内部温度响应
整个实验过程中,采集了M1~M3模组区域温度、M4模组喷发口上方液冷板底面温度、电池包箱盖内外温度、电池包之间的空隙处,温度曲线如图7所示。CTP电池包在整个热失控蔓延过程中,M1~M3模组未触发热失控。电池模组侧面温度曲线显示,在整个热失控过程中,如果不考虑火焰导致的瞬间高温,整个模组温度介于90℃~170℃之间。其中,M1模组温度介于23℃~131℃之间,三个模组侧面温度上升阶段对应着同步蔓延及具有明火的稳定燃烧阶段。由此可以看出,CTP电池包M4-M5模组和M1-M2-M3模组中间的空气阻隔具有一定的热失控蔓延阻断作用。电池包内外顶盖及内部各个节点温度特征显示,同步蔓延出现之前,电池顶盖内最高温度始终低于300℃,同步蔓延之后,温度介于300℃~700℃之间。电池包内空气域高温集中在BMS上方区域(图中的红色阴影区域)。该区域设计为凸起形状,最容易积累热烟气,实验视频中可以看到,在热失控蔓延实验过程中该区域最先破开,因此在进行CTP电池包的热失控蔓延防控时,该区域要作为重点防护区域。
图7 CTP电池包热失控蔓延的内部温度变化规律
4.4烟火时序特征
如图8所示,电池发生热失控,释放的气体导致电池包内压力升高,当电池包内部压力超过20kPa~40kPa时,泄压阀开阀排气;随着失控气体及高温颗粒物流动,电池失控的喷发物质在M4模组与M1模组中间的BMS区域聚集,高温烟气导致此处外壳破损,大量的黑烟从破损处喷射出来。M4模组中的电池在侧向传热及热烟气的耦合作用下,依次发生热失控,随着电池侧面及热烟气对邻近横排模组的加热,在顺序蔓延第6节电池后,同步蔓延发生。同步蔓延过程中,7节电池在10s内全部发生热失控。在同步蔓延后期,电池包失控气体的形态发生变化,逐渐由浓黑的烟气向白色烟雾转变,并出现“白烟—黑烟—白烟”交替出现的现象。随后,在触发位置发生爆燃,可见带压射流明火从触发位置喷射出来。这里可以推断,电池包出现明火的前兆是“黑烟白烟雾交替”出现,消防救援人员在观察这一情景时,应根据现场情况,灵活调整技战术或者主动撤退,最大限度的避免伤亡事件发生。
图8 CTP电池包热失控蔓延烟火时序
4.5质量损失及形变
图9 CTP电池包的热失控蔓延质量损失情况
图10 CTP电池包热失控蔓延形变规律
4.6喷发颗粒物理化特性
结论
本文研究了全球第一代CTP电池包的热失控蔓延特性。分析了CTP电池包的热失控蔓延过程中的温度响应、气体扩散、蔓延规律、质量损失及形变、烟火时序等,同时采用多种理化分析手段,定性与定量分析了喷发颗粒物的理化特性。得出以下主要结论。
(1) CTP电池包热失控蔓延主要有三种主要模式,分别是顺序蔓延、同步蔓延和乱序蔓延;同步蔓延对电池造成的损害比其他蔓延行为严重。
(2) CTP上下模组之间的液冷板及云母片无法抑制热失控纵向传播;而增大模组与模组之间的空气域则有助于防止模块间蔓延。
(3) 热失控蔓延过程中形变凸起的方向指向最先失控的电池,同步传播导致电池损坏和质量损失更加严重,电池形变凸起规律不明显。
(4)CTP热失控蔓延过程中,电池包内部未触发热失控区域的温度介于90~170℃之间。电池包出现明火的时间为首节电池触发热失控45mins后。
(5) 根据热失控喷发颗粒物元素价态变化的敏感性,对电池组成材料中的元素进行分类,其中敏感元素包含Al、C、F、Mn、Ni和P,不敏感的元素是Co、Cu、S、Li和P。
更多详细完整内容请参阅原文,原文下载和引用:
H. Wang, Q. Wang, Z. Zhao, C. Jin, C. Xu, W. Huang, Z. Yuan, S. Wang, Y. Li, Y. Zhao, J. Sun, X. Feng, Thermal runaway propagation behavior of the Cell-to-Pack battery system, J. Energy Chem. 84 (2023) 162–172.
DOI:10.1016/j.jechem.2023.05.015
作者简介
第一作者
通讯作者