香港友诚生物科技有限公司
2011/4/12 10:32:46疼痛是机制非常复杂的神经活动。疼痛研究已经成为当前神经科学研究的重要课题之一。由于疼痛机制的复杂性,使得在患者身上研究与疼痛有关的神经机制成为不可能的事。因而,我们的研究需要相应的动物模型。本章介绍了在现代神经科学研究中常用的疼痛动物模型。在概要介绍了疼痛研究的意义及其现状之后,重点介绍了在生理痛研究和急性、慢性病理痛研究中所应用的动物模型。生理痛的模型即常用的动物伤害性感受阈测定法;急性病理痛的模型则主要是各种急性炎症模型模型;慢性病理痛的模型则包括慢性炎症模型和慢性神经损伤模型。
前言
疼痛(pain)是人们一生中经常遇到的不愉快的感觉。它提供躯体受到威胁的警报信号,是生命*的一种特殊保护功能。另一方面,它又是各种疾病zui常见的症状,也是当今困扰人类健康zui严重的问题之一。近年来,仅在美国就有三至四千万人患有慢性痛。据估计,美国每年用于治疗慢性痛的费用约为400~600亿美元;澳大利亚每年用于治疗疼痛的费用占全部医疗费用的40%。随着医学的进步和人类生活水平的提高,烈性传染病逐渐得到控制,疼痛在人的身心痛苦和医疗费用消耗上的相对地位将越来越重要。
由于难以在人体对疼痛进行深入的机制研究,有必要建立疼痛的动物模型。但疼痛是是包括性质、强度和程度各不相同的多种感觉的复合,并往往与自主神经系统、运动反应、心理和情绪反应交织在一起,它既不是简单地与躯体某一部分的变化有关,也不是由神经系统某个单一的传导束、神经核和神经递质进行传递的,所以很难将某种客观指标与疼痛直接起来。因而,我们只能根据模型动物对伤害性刺激的保护反应和保护性行为来推测它们的疼痛程度。
伤害性感受(nociception)和痛觉是两个有密切关系但又不相同的概念。前者是指中枢神经系统对由于伤害性感受器的激活而引起的传入信息的加工和反应,以提供组织损伤的信息;痛觉则是指上升到感觉水平的疼痛感觉。两者之间有时并没有严格的相关性。
生理痛模型与常用的痛阈测定法
概述
为了能够对痛觉现象及其机制作深入细致的观察,特别是在中枢神经系统的形态学、细胞生物学和分子生物学水平研究痛觉机制,必须建立动物的痛觉模型。又由于痛觉是意识水平的感觉,我们无法确定动物是否具有痛觉,只能观察其对伤害性刺激的行为反应。因而在下文的描述中有时用伤害性感受阈(nociceptive threshold)取代痛阈(pain threshold)。
正常情况下,疼痛是机体对外界伤害性刺激的感受,它是一种报警系统,提示实存的或潜在的组织损伤的可能性。如果这种伤害性刺激是可以回避的,那么痛觉就是一种具有*的积极意义的感觉形式,称为生理痛。这种意义上的疼痛模型实际上就是对伤害性感受阈的测量。它是通过观察动物对伤害性温度和机械刺激的逃避反应实现的。
如果动物遇到无法逃避的伤害性刺激,就会引起它的情绪反应,发出嘶叫声。这是需要神经中枢配合的反应,并且不受局部运动功能的影响。因而,在伤害性刺激下引起的嘶叫反应也可以作为伤害性感受阈的测量指标。
热辐射-逃避法
这是zui常见的伤害性感受阈测量方式。zui常用的有热辐射-甩尾法、热辐射-甩头法和热辐射-抬足法。
热辐射-甩尾法
以大鼠为例。先将大鼠固定在特制的塑料筒中,令其尾部暴露在外并自然下垂,待动物安静20分钟后再予测定。辐射热源可采用8.75毫米放映灯泡(电压为18.5伏,可调节),经透镜聚焦后发射出直径约4毫米的光束,照射相当于尾部中、下三分之一交界处的皮肤(光源与尾部皮肤必须紧密相贴);采用与光源并联的电子计时器同步记录照射持续时间,即当照射开始同时启动秒表,当动物尾部出现明显逃避应时,关闭光源并同时停止计时。所测得的时间间隔即为甩尾反应潜伏期(Tail-Flick Latency, TFL)。
一般在正式测量之前先调节电压,使TFL值保持在4~6秒左右,然后每5分钟测定一次,取三次测定的平均值作为基础伤害性感受阈。若动物在镇痛作用下TFL延长至超过15秒,则停止照射并以15秒作为甩尾潜伏期的上限,以免照射过久灼伤皮肤。
用类似的方法也可以在小鼠测定其热辐射-甩尾反应潜伏期。
热辐射-甩头法
一般用家兔作为实验对象。先将家兔用特制的布带悬空吊起,令其四肢自由伸展,并蒙蔽其眼睛。实验前应用弯剪刀小心剪去口唇部胡须。待动物安静后,用上述同样的光源照射家兔口唇,等待其明显的逃避反应(将头部移开)。利用同样的电子计时器测定此反应的潜伏期。计算方法如上所述。注意其zui长照射时间不要超过10秒。
热辐射-抬足法
仍以大鼠为例,将大鼠固定在特制塑料筒中,令其后肢暴露在外。待动物安静后,用同样的辐射光源照射其后足掌底部;或令大鼠自由站立于玻璃板上,将辐射光源置于玻璃板下,隔玻璃照射足底。测定其逃避反应(抬足)出现的潜伏期。以15秒为其zui长照射时间的上限。
冷水、热水刺激逃避法
实验动物可以是大鼠或小鼠。刺激部位可以选择尾尖或后足。将动物适当固定后,令尾尖或后足自然下垂。待动物安静后,将被刺激部位浸于10°C的冷水或46°C的热水中,记录从开始浸入到被刺激部位逃离水面或出现明显挣扎行为的时间作为伤害性感受阈。仍以15秒为zui长刺激时间的上限。
机械刺激-逃避法
又称为Randall-Selitto反应。一般选用大鼠作为实验动物。动物置于特制塑料固定筒内,用Randall-Selitto反应测定仪给鼠后足跖部施加以恒定速率连续递增的压力。当其后足缩回时,即停止加压并读出此时之压力数值(mmHg),以此压力-缩腿阈(Paw-Withdrawal Threshold, PWT)作为伤害性感受阈。先测定三次PWT,每次测定间隔5min,取其平均值作为基础阈值;以后测定所得结果均与它比较,并以150%作为PWT升高的上限以免损伤局部组织。
另一种方法是,每次给动物足底施加恒定的压力,记录从开始加压至动物做出逃避反应的时间,以此时间作为伤害性感受阈。
机械刺激-嘶叫法
此方法一般以大鼠为实验对象。采用的固定方法与前节相同,但给予动物不可逃避的刺激,记录动物发出嘶叫时的压力数值(当采用连续递增的压力时)或时间潜伏期(当采用恒定压力时)。
电刺激-嘶叫法
本法同样以大鼠为实验对象。刺激部位可以是尾部或后足。首先将动物适当固定,并将一对不锈钢针刺激电极插入待测部位(两极间距1cm),待动物安静后给刺激电极通以频率为50Hz的方波刺激,逐渐增大电流强度,记录动物开始发出嘶叫时的刺激强度,作为其伤害性感受阈。
小结
神经痛是临床上常见的严重而难于治疗的疼痛性疾患。上述的几种模型分别在一定程度是模拟了相应的临床疼痛疾患。但也有一些神经痛如疱疹后神经痛、三叉神经痛等,目前尚无法制备相应的动物模型进行研究。这方面的有关模型还有待于进一步开发。
结语
本章叙述了某些生理性和病理性疼痛动物模型的建立方法。毫无疑问,动物模型的建立将为相应的疼痛性疾患的诊断和治疗研究提供帮助。已有的研究结果表明,不同类型的疼痛模型,其中枢过程有很大的差异。这表明,疼痛可能并非由简单的中枢机制决定;痛觉调质以及疼痛本身可能涉及若干中枢机制的复杂组合。比较不同疼痛模型的中枢机制,可能有助于揭示疼痛的真正中枢本质,从而使我们对疼痛现象的认识和临床疗效均获得飞跃式的提高。这样的比较研究也可能为我们理解某些目前尚不知其病因因而无法制备相关模型的疼痛疾患,并为这些疾患的治疗提供帮助。