上海仰光电子科技有限公司 >> 进入商铺
2021/6/2 15:00:36变频器维修是一项理论知识、实践经验与操作水平的结合的工作,其技术水平决定着变频器的维修质量。从事变频器维修的人员需要经常学习,了解变频器内部的电子元器件所具备的功能和特点,开拓知识面,将新学到的知识应用于实际工作中,不断提高维修技术水平。
常见方法
1、测试整流电路
找下结果,可以判定电路已出现异常,A.到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,正常时有几十欧的阻值,且基本平衡。相反将黑表棒接到P端,红表棒依
次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复以上步骤,都应得到相同结果。如果有以阻值三相不平衡,说明整流桥有故障.B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或启动电阻出现故障。
2、测试逆变电路
将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。将黑表棒N端,重复以上步骤应得到相同结果,否则可确定逆变模块有故障。
动态测试
在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意以下几点:
1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等);
2、检查变频器各接插口是否已正确连接,连接是否有松动,连接异常有时可能会导致变频器出现故障,严重时会出炸机等情况;
3、上电后检测故障显示内容,并初步断定故障及原因;
4、如未显示故障,首先检查参数是否有异常,并将参数复归后,在空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障;
5、在输出电压正常(无缺相、三相平衡)的情况下,负载测试,尽量是满负载测试。[1]
故障判断
1、整流模块损坏
通常是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染的设备等。
2、逆变模块损坏
通常是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波形良好状态下,更换模块。在现场服务中更换驱动板之后,须注意检查马达及连接电缆。在确定无任何故障下,才能运行变频器。
3、上电无显示
通常是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,操作面板损坏同样会产生这种状况。
4、显示过电压或欠电压
通常由于输入缺相,电路老化及电路板受潮引起。解决方法是找出其电压检测电路及检测点,更换损坏的器件。
5、显示过电流或接地短路
通常是由于电流检测电路损坏。如霍尔元件、运放电路等。
6、电源与驱动板启动显示过电流
通常是由于驱动电路或逆变模块损坏引起。
7、空载输出电压正常,带载后显示过载或过电流
通常是由于参数设置不当或驱动电路老化,模块损坏引起。
过电流保护
在变频器维修中,过电流保护的对象主要指带有突变性质的、电流的峰值超过了变频器的容许值的情形.
由于逆变器的过载能力较差,所以变频器的过电流保护是至关重要的一环,迄今为止,已发展得十分完善.
一、过电流的原因
1、工作中过电流即拖动系统在工作过程中出现过电流.其原因大致来自以下几方面:
① 电动机遇到冲击负载,或传动机构出现"卡住"现象,引起电动机电流的突然增加.
② 变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等.
③ 变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的"直通",使直流电压的正、负极间处于短路状态。
2、升速时过电流 当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。
3、降速中的过电流 当负载的惯性较大,而降速时间设定得太短时,也会引起过电流。因为,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以是转子绕组切割磁力线的速度太大而产生过电流。
二、处理方法
1、 起动时一升速就跳闸,这是过电流十分严重的现象,主要检查
① 工作机械有没有卡住
② 负载侧有没有短路,用兆欧表检查对地有没有短路
③ 变频器功率模块有没有损坏
④ 电动机的起动转矩过小,拖动系统转不起来
2、 起动时不马上跳闸,而在运行过程中跳闸,主要检查
① 升速时间设定太短,加长加速时间
② 减速时间设定太短,加长减速时间
③ 转矩补偿(U/F比)设定太大,引起低频时空载电流过大
④ 电子热继电器整定不当,动作电流设定得太小,引起变频器误动作
电压保护
1、 过电压保护
产生过电压的原因及处理方法:
① 电源电压太高
② 降速时间太短
③ 降速过程中,再生制动的放电单元工作不理想,来不及放电,请增加外接制动电阻和制动单元
④ 请检查放电回路有没有发生故障,实际并不放电;对于小功率的变频器很有放电电阻损坏
2、 欠电压保护
产生欠电压的原因及处理方法:
① 电源电压太低
② 电源缺相;
③ 整流桥故障:如果六个整流二极管中有部分因损坏而短路,整流后的电压将下降,对于整流器件和晶闸管的损坏,应注意检查,及时更换。
逆变器件的介绍:
1.SCR和GTO晶闸管
⑴普通晶闸管SCR 曾称可控硅,它有三个极:阳极,阴极和门极。
SCR的工作特点是,当在门极与阴极间加一个不大的正向电压(G为+,K为-)时,SCR即导通,负载Rl中就有电流流过。导通后,即使取消门极电压,SCR仍保持导通状态。只有当阳极电路的电压为0或负值时,SCR才关断。所以,只需要用一个脉冲信号,就可以控制其导通了,故它常用于可控整流。
作为一种无触点的半导体开关器件,其允许反复导通和关断的次数几乎是无限的,并且导通的控制也十分方便。这是一般的"通-断开关"所望尘莫ji的,从而使实现异步电动机的变频调速取得了突破。但由于变频器的逆变电路是在直流电压下工作的,而SCR在直流电压下又不能自行关断,因此,要实现逆变,还必须增加辅助器件和相应的电路来帮助它关断。所以,尽管当时的变频调速装置在个别领域(如风机和泵类负载)已经能够实用,但未能进入大范围的普及应用阶段。
⑵门极关断(GTO)晶闸管 SCR在一段时间内,几乎是能够承受高电压和大电流的唯yi半导体器件。因此,针对SCR的缺点,人们很自然地把努力方向引向了如何使晶闸管具有关断能力这一点上,并因此而开发出了门极关断晶闸管。
GTO晶闸管的基本结构和SCR类似,它的三个极也是:阳极(A)、阴极(K)和门极(G)。其图行符号也和SCR相似,只是在门极上加一duan线,以示区别。
GTO晶闸管的基本电路和工作特点是:
①在门极G上加正电压或正脉冲(开关S和至位置1)GTO晶闸管即导通。其后,即使撤消控制信号(开关回到位置0),GTO晶闸管仍保持导通。可见,GTO晶闸管的导通过程和SCR的导通过程*相同。
②如在G、K间加入反向电压或较强的反向脉冲(开关和至位置2),可使GTO晶闸管关断。 用GTO晶闸管作为逆变器件取得了较为满意的结果,但其关断控制较易失败,故仍较复杂,工作频率也不够高。而几乎是与此同时,大功率管(GTR)迅速发展了起来,使GTO晶闸管相形见绌。因此,在大量的中小容量变频器中,GTO晶闸管已基本不用。但其工作电流大,故在大容量变频器中,仍居主要地位。
逆变器件的介绍:上次我们向大家介绍了普通晶闸管(SCR)和门极关断晶闸管(GTO),最重要是让大家了解变频器中逆变器件是如何工作的,它们起到什么作用!接下来我们讲:大功率晶体管(GTR)-大功率晶体管,也叫双极结型晶体管(BJT)。
1、 变频器用的GTR一般都是(复合管)模块,其内部有三个极分别是集电极C、发射极E和基极B。根据变频器的工作特点,在晶体管旁还并联了一个反向连接的续流二极管。又根据逆变桥的特点,常做成双管模块,甚至可以做成6管模块。
2、 工作时状态 和普通晶体管一样,GTR也是一种放大器件,具有三种基本的工作状态:
⑴放大状态 起基本工作特点是集电极电流Ic的大小随基极电流Ib而变 Ic=βIb 式中β------GTR的电流放大倍数。
GTR处于放大状态时,其耗散功率Pc较大。设Uc=200V,Rc=10Ω,β=50,Ib=200mA(0.2A) 计算如下:Ic= βIb=50*0.2A=10A Uce=Uc-IcRc=(200-10*10)V=100V Pc=UceIc=100*10W=1000W=1KW ⑵饱和状态 Ib增大时,Ic随之而增大的状态要受到欧姆定律的制约。当 βIb>Uc/Rc 时,Ic=βIb的关系便不能再维持了,这时,GTR开始进入"饱和"状态。而当 Ic的大小几乎*由欧姆定律决定,即 Ics≈Uc/Rc 时,GTR便处于深度饱和状态(Ics 为饱和电流)。这时,GTR的饱和压降Uces约 为1-5V。
GTR处于饱和状态时的功耗是很小的。上例中,设Uces=2V,则 Ics=Uc/Rc=200/10A=20A Pc=UcesIcs=2*20W=40W
可见,与放大状态相比,相差甚远。
⑶截止状态 即关断状态。这是基极电流Ib≤0的结果。
在截止状态,GTR只有很微弱的漏电流流过,因此,其功耗是微不足道的。
GTR在逆变电路中是用来作为开关器件的,工作过程中,总是在饱和状态间进行交替。所以,逆变用的GTR的额定功耗通常是很小的。而如上述,如果GTR处于放大状态,其功耗将增大达百倍以上。所以,逆变电路中的GTR是不允许在放大状态下小作停留的。
3.主要参数
⑴在截止状态时
①击穿电压Uceo和Ucex:能使集电极C和发射极E之间击穿的最小电压。基极B开路是用 Uceo表示,B、E间接入反向偏压时用Ucex 表示。在大多数情况下,这两个数据是相等的。
②漏电流Iceo 和 Icex:截止状态下,从C极流向E极的电流。B极开路时为 Iceo,B、E间反偏时为 Icex。
⑵在饱和状态时
① 集电极最大电流Icm:GTR饱和导通是的最大允许电流。
② 饱和压降Uces:当GTR饱和导通时,C、E间的电压降。
⑶在开关过程中
① 开通时间Ton:从B极通入正向信号电流时起,到集电极电流上升到0.9 Ics 所需要的时间。
② 关断时间Toff:从基极电流撤消时起,至Ic下降至0.1 Ics 所需的时间
开通时间和关断时间将直接影响到SPWM调制是的载波频率。通常,使用GTR做逆变管时的载波频率底于2KHz。
4.变频器用GTR的选用
⑴Uceo 通常按电源线电压U峰值的2倍来选择。
Uceo≥2厂2U 在电源电压为380V的变频器中,应有 Uceo≥2厂2U*380V=1074.8V,故选用 Uceo=1200V的GTR是适宜的。
⑵Icm 按额定电流In峰值的2倍来选择 Icm≥2厂2 In GTR是用电流信号进行驱动的,所需驱动功率较大,故基极驱动系统比较复杂,并使工作频率难以提高,这是其不足之处。 今天我告诉大家的是MOSFET以及IGBT
1、 功率场效应晶体管(POWER MOSFET) 它的3个极分别是源极S、漏极D和栅极G
其工作特点是,G、S间的控制信号是电压信号Ugs。改变Ugs的大小,主电路的漏极电流Id也跟着改变。由于G、S间的输入阻抗很大,故控制电流几乎为0,所需驱动功率很小。和GTR相比,其驱动系统比较简单,工作频率也比较高。此外,MOSFET还具有热稳定性好、安全工作区大 等优点。
但是,功率场效应晶体管在提高击穿电压和增大电流方面进展较慢,故在变频器中的应用尚不能居主导地位。
2、 绝缘栅双极晶体管(IGBT) IGBT是MOSFET和GTR相结合的产物,是栅极为绝缘栅结构(MOS结构)的晶体管,它的三个极分别是集电极C、发射极E和栅极G。
工作特点是,控制部分与场效应晶体管相同,控制信号为电压信号Uge,输入阻抗很高,栅极电流I≈0,故驱动功率很小。而起主电路部分则与GTR相同,工作电流为集电极电流I。
至今,IGBT的击穿电压也已做到1200V,集电极最大饱和电流已超过1500A,由IGBT作为逆变器件的变频器容量已达到250KVA以上。
此外,其工作频率可达20KHZ。由IGBT作为逆变器件的变频器的载波频率一般都在10KHZ以上,故电动机的电源波形比较平滑,基本无电磁噪声。
在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响
通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少. 可以用以下公式估算: 发热量的近似值= 变频器容量(KW)×55 [W]
在这里, 如果变频器容量是以恒转矩负载为准的 (过流能力150% * 60s)
如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。 电抗器安装在变频器侧面或测上方比较好。
这时可以用估算: 变频器容量(KW)×60 [W]
因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品.
注意: 如果有制动电阻的话,因为制动电阻的散热量很大, 因此最好安装位置最好和变频器隔离开, 如装在柜子上面或旁边等。
那么, 怎样才能降低控制柜内的发热量呢?
当变频器安装在控制机柜中时,要考虑变频器发热值的问题。
根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。
如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。
还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。 注意:变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的!
冷却风扇
一般功率稍微大一点的变频器, 都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。 注意控制柜和变频器上的风扇都是要的,不能谁替代谁。
其他关于散热的问题
在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,1000m每-5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大, 所以也要看具体应用。 比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。
2。 开关频率:变频器的发热主要来自于IGBT, IGBT的发热有集中在开和关的瞬间。 因此开关频率高时自然变频器的发热量就变大了。 有的厂家宣称降低开关频率可以扩容, 就是这个道理。
基础知识
技术发展
直流电动拖动和交流电动机拖动先后生于19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。由于当时的技术问题,在很长的一个时间内,需要进行调速控制的拖动系统中则基本上采用的是直流电动机。
直流电动机存在以下缺点是由于结构上的原因:
1、由于直流电动机存在换向火花,难以应用于存在易燃易爆气体的恶劣环境;
2、需要定期更换电刷和换向器,维护保养困难,寿命较短;
3、结构复杂,难以制造大容量、高转速和高电压的直流电动机。
而与直流电动机相比,交流电动机则具有以下优点:
1、不存在换向火花,可以应用于存在易燃易火暴气体的恶劣环境;
2、容易制造出大容量、高转速和高电压的交流电动机;
3、结构坚固,工作可靠,易于维护保养。
就是因为这样,限制了交流高速系统的推广应用。经过20世纪70年代中期的第二次石油危机之后和电子技术的发展,交流高速系统的变频器技术得到了高速的发展。
开关电源
开关电源电路提供变频器的整机控制用电,是变频器正常工作的先决条件。变频器应用的开关电源电路,为直一交一直型的逆变电路,是一种电压和功率的变换器,将直流电压和功率转换为脉冲电压,再整流成为另一种直流电压。输人、输出电压由开关变压器相隔离,开关变压器起到功率传递、电压/电流变换的作用。开关变压器为降压变压器。开关电源的特点如下:
1)开关电源的振荡和调压方式是利用改变脉冲宽度或周期来调整输出电压的,称为时间比例控制,又分为PWM(调宽)和PFM(调频)两种控制方式。
2)从电路的能量转换特性看,可分为正激和反激两种工作方式。开关管饱和导通时, 二次绕组连接的整流器受反偏压而截止,开关变压器的一次绕组流入电流而储能〈电磁转换)。开关管截止时,二次绕组经负载电路释放电能(磁电转换)。正激方式则与此相反, 实际应用不多。
3)从开关变压器的一次电路结构来看,有分立元件构成的和集成振荡芯片构成的两种电路形式。因而从振荡信号的来源看,又分为自激(分立零件)和他激式(IC电路)开关电源。两种电路结构都有应用。 4)开关管有采用双极型器件和采用场效应晶体管的。
5)小功率变频器采用单端正激式电路,大、中功率变频器常采用双端正激式电路。一般变频器的开关电源,常提供以下几种电压输出:CPU及附属电路、控制电路、操作显示面板的+5V供电;电流、电压、温度等故障检测电路、控制电路的±15V供电;控制端子、工作继电器线圈的24V供电。四路相互隔离的约为22V的驱动电路的供电,该四路供电往往又经稳压电路处理成+15V、 -7.5V的正、负电源供驱动电路,为IGBT逆变输出电路提供激励电流。
任何电子设备,电源电路的故障率总是相当高的一因其要提供整机的电源供应,负担最重。变频器的开关电源电路,形式上比较单一,结构上也比较简单。但是简单电路也可能会产生疑难故障。开关电源的检修不像线性电源那么直观,电路的任一个小环节一振荡、稳压、保护、负载等出现异常,都会使电路出现各种各样的故障现象。
上电后无反应,操作显示面板无显示,变频器好像没通电一样。测量控制端子的控制电压和10V频率调整电压都为0,测量变频器主接线端子电阻正常,那么大致上可以断定问题是出在开关电源电路了。
过热保护
主要有以下几点:
⑴风扇运转保护 变频器的内装风扇是箱体内部散热的主要手段,它将保证控制电路的正常工作。所以,如果风扇运转不正常,应立即进行保护;
⑵逆变模块散热板的过热保护 逆变模块是变频器内发生热量的主要部件,也是变频器中最重要而又最脆弱的部件。所以,各变频器都在散热板上配置了过热保护器件;
⑶制动电阻过热保护 制动电阻的标称功率是按短时运行选定的。所以,一旦通电时间过长,就会过热。这时,应暂停使用,待冷却后再用。或选用较大一点功率电阻;
⑷冷却风道的入口和出口不得堵塞,环境温度也可能高于变频器的允许值。如果还有问题,你可以打电话给我们。
在VVVF的实施,有两种基本的调制方法:
1.脉幅调制 (PAM) 逆变器所得交流电压的振幅值等于直流电压值(Um=Ud)。因此,实现变频也是变压的最容易想到的方法,便是在调节频率的同时,也调节直流电压;
这种方法的特点是,变频器在改变输出频率的同时,也改变了电压的振幅值,故称为脉幅调制,常用PAM(Pulse Amplitude Modulation)表示。 PAM需要同时调节两部分:整流部分和逆变部分,两者之间还必须满足Ku和Kf间的一定的关系,故其控制电路比较复杂。
2.脉宽调制(PWM) 把每半个周期内,输出电压的波形分割成若干个脉冲波,每个脉冲的宽度为T1,每两个脉冲间的间隔宽度为T2,那么脉冲的占空比Υ=T1/(T1+T2)。
这时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。当电压周期增大(频率降低),电压脉冲的幅值不变,而占空比在减小,故平均电压降低。
此法的特点是,变频器在改变输出频率的同时,也改变输出电压的脉冲占空比(幅值不变)故称为脉宽调制,常用PWM(Pulse width modulation)表示。
PWM只须控制逆变电路便可实现,与PAM相比,控制电路简化了许多。
不论是PAM,还是PWM,其输出电压和电流的波形都是非正玄波,具有许多高次谐波成分。为了使输出电流的波形接近与正玄波,又提出了正玄波脉宽调制的方式。下次接着讲SPWM 各位朋友大家好,今天我要为大家讲的是:正弦波脉宽调制(SPWM)
1、QPWM的概念 在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小,反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。
SPWM脉冲系列中,各脉冲的宽度以及相互间的间隔宽度是由正弦波(基准波或调制波)和等腰三角波(载波)的交点来决定的。具体方法如后所述。
2、单极性SPWM法 (1)调制波和载波:曲线①是正弦调制波,其周期决定于需要的调频比kf,振幅值决定于ku,曲线②是采用等腰三角波的载波,其周期决定于载波频率,振幅不变,等于ku=1时正弦调制波的振幅值,每半周期内所有三角波的极性均相同(即单极性)。 调制波和载波的交点,决定了SPWM脉冲系列的宽度和脉冲音的间隔宽度,每半周期内的脉冲系列也是单极性的。 (2)单极性调制的工作特点:每半个周期内,逆变桥同一桥臂的两个逆变器件中,只有一个器件按脉冲系列的规律时通时通时断地工作,另一个*截止;而在另半个周期内,两个器件的工况正好相反,流经负载ZL的便是正、负交替的交变电流。
3、双极性SPWM法
(1)调制波和载波:调制波仍为正弦波,其周期决定于kf,振幅决定于ku,中曲线①,载波为双极性的等腰三角波,其周期决定于载波频率,振幅不变,与ku=1时正弦波的振幅值相等。
调制波与载波的交点决定了逆变桥输出相电压的脉冲系列,此脉冲系列也是双极性的,但是,由相电压合成为线电压(uab=ua-ub;ubc=ub-uc;uca=uc-ua)时,所得到的线电压脉冲系列却是单极性的。
(2)双极性调制的工作特点:逆变桥在工作时,同一桥臂的两个逆变器件总是按相电压脉冲系列的规律交替地导通和关断,毫不停息,而流过负载ZL的是按线电压规律变化的交变电流。
4、实施SPWM的基本要求
(1)必须实时地计算调制波(正弦波)和载波(三角波)的所有交点的时间坐标,根据计算结果,有序地向逆变桥中各逆变器件发出"通"和"断"的动作指令。
(2)调节频率时,一方面,调制波与载波的周期要同时改变(改变的规律本文不作介绍);另一方面,调制波的振幅要随频率而变,而载波的振幅则不变,所以,每次调节后,所胶点的时间坐标都 必须重新计算。 要满足上述要求,只有在计算机技术取得长足进步的20世纪80年代才有可能,同时,又由于大规模集成电路的飞速发展,迄今,已经有能够产生满足要求的SPWM波形的专用集成电路了。 西门子420变频器PID调试:总结在变频器page5-13.14详细讲解在说明书page10-84.85..86.87.88.89.90.91.92.93.94 重要几个参数为1.P0004改为22. page10-6
2.P2200改为1 允许PID控制器投入
3. P2257 PID设定值的斜坡上升时间
p2258 PID设定值的斜坡下降时间
P2261 PID设定值的滤波时间常数
P2264 PID反馈信号
P2265 PID反馈滤波时间常数
P2267 PID反馈信号的上限值
P2268 PID反馈信号的下限值
P2269 PID反馈信号的增益
P2270 PID传感器的反馈型式
P2280 PID比例增益系数
P2285 PID积分时间
P2291 PID输出上限
P2292 PID输出下限
P2293 PID限幅值的斜坡上升/下降时间 噪声与振动及其对策
采用变频器调速,将产生噪声和振动,这是变频器输出波形中含有高次谐波分量所产生的影响。随着运转频率的变化,基波分量、高次谐波分量都在大范围内变化,很可能引起与电动机的各个部分产生谐振等。 噪声问题及对策
(1)用变频器传动电动机时,由于输出电压电流中含有高次谐波分量,气隙的高次谐波磁通增加,故噪声增大。电磁噪声由以下特征:由于变频器输出中的低次谐波分量与转子固有机械频率谐振,则转子固有频率附近的噪声增大。变频器输出中的高次谐波分量与铁心机壳轴承架等谐振,在这些部件的各自固有频率附近处的噪声增大。
变频器传动电动机产生的噪声特别是刺耳的噪声与PWM控制的开关频率有关,尤其在低频区更为显著。一般采用以下措施平抑和减小噪声:在变频器输出侧连接交流电抗器。如果电磁转矩有余量,可将U / f定小些。采用特殊电动机在较低频的噪声音量较严重时,要检查与轴系统(含负载)固有频率的谐振。
(2) 振动问题及对策 变频器工作时,输出波形中的高次谐波引起的磁场对许多机械部件产生电磁策动力,策动力的频率总能与这些机械部件的固有频率相近或重合,造成电磁原因导致的振动。对振动影响大的高次谐波主要是较低次的谐波分量,在PAM方式和方波PWM方式时有较大的影响。但采用正弦波PWM方式时,低次的谐波分量小,影响变小。
减弱或消除振动的方法,可以在变频器输出侧接入交流电抗器以吸收变频器输出电流中的高次谐波电流成分。使用PAM方式或方波PWM方式变频器时,可改用正弦波PWM方式变频器,以减小脉动转矩。从电动机与负载相连而成的机械系统,为防止振动,必须使整个系统不与电动机产生的电磁力谐波。 负载匹配及对策 生产机械的种类繁多,性能和工艺要求各异,其转矩特性不同,因此应用变频器前首先要搞清电动机所带负载的性质,即负载特性,然后再选择变频器和电动机。负载有三种类型:恒转矩负载、风机泵类负载和恒功率负载。不同的负载类型,应选不同类型的变频器。
(3) 恒转矩负载 恒转矩负载又分为摩擦类负载和位能式负载。 摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择具有恒定转矩特性,而且起动和制动转矩都比较大,过载时间和过载能力大的变频器,如FR-A540系列。 位能负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器,如FR-A241系列。
(4) 风机泵类负载 风机泵类负载是典型的平方转矩负载,低速下负载非常小,并与转速平方成正比,通用变频器与标准电动机的组合最合适。这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可,如FR-A540(L)。如果将变频器输出频率提高到工频以上时,功率急剧增加,有时超过电动机变频器的容量,导致电动机过热或不能运转,故对这类负载转矩,不要轻易将频率提高到工频以上。
(5) 恒功率负载 恒功率负载指转矩与转速成反比,但功率保持恒定的负载,如卷取机、机床等。对恒功率特性的负载配用变频器时,应注意的问题:在工频以上频率范围内变频器输出电压为定值控制,,所以电动机产生的转矩为恒功率特性,使用标准电动机与通用变频器的组合没有问题。而在工频以下频率范围内为U/f定值控制,电动机产生的转矩与负载转矩又相反倾向,标准电动机与通用变频器的组合难以适应,因此要专门设计。
发热问题及对策
变频器发热是由于内部的损耗而产生的,以主电路为主,约占98%,控制电路占2%。为保证变频器正常可靠运行,必须对变频器进行散热。主要方法有:
(1) 采用风扇散热:变频器的内装风扇可将变频器箱体内部散热带走。
(2) 环境温度:变频器是电子装置,内含电子元件机电解电容等,所以温度对其寿命影响较大。通用变频器的环境运行温度一般要求-10℃~+50℃,如果能降低变频器运行温度,就延长了变频器的使用寿命,性能也稳定。我们一直忙于变频器的保养。⑴可以延长变频器的使用期⑵电器方面我们可以说减少维修率⑶也可以体现公司的管理,公司的形象!我司保养的具体方案如下:1、 变频器须解体,查看内部是否有异常现象.(如:镙丝松动、焊锡脱落、器件松动、器件烧焦、烧煳现象。) 2、 检查变频器内部易老化器件,如:风扇,功率器件,功率电容,及印板老化现象。 3、 清理变频器内部粉尘,油污,腐蚀性及导体杂质。对主要印板如:主控板,驱动板,开关电源板。采用全新品进口电子清洁剂进行喷洗,去除其老化层及导电物质。 4、 对变频器主要控制部分进行先进的加膜处理。起到防尘,防老化,防导电物质,防水,及腐蚀性物质。
故障案例
(1) AEG Multiverter122/150-400变频器在启动时直流回路过压跳闸
这台变频器并非每次启动都会过压跳闸。检查时发现变频器在上电但没有合闸信号时,直流回路电压即达360V,该型变频器直流回路的正极串接1台接触器,在有合闸信号时经过预充电过程后吸合,故怀疑预充电回路IGBT性能不良,断开预充电回路IGBT,情况依旧。用万用表检查变频器输出端时其对地阻值很小,查至现场发现电机接线盒被水淋湿,干燥处理后,变频器工作正常。
由于电机接线盒被水淋湿,直流回路负极的对地漏电流经接线盒及变频器逆变器中的续流二极管给直流回路的电容充电,这种情况合闸通常理解应该为过流跳闸而实际为过压跳闸。本人认为,启动时变频器输出电压和频率是逐渐上升的,电机被水淋湿后,会造成输出电流的变化率很高,从而引起直流回路过压。
(2) 控制辊道电机的AEG Maxiverter-170/380变频器出现速度反馈值大于速度设定值经观察发现:
a) 在轧钢过程中不存在这种情况,当钢离开辊道后,才出现这种情况;
b) 当速度反馈值大于速度设定值时,直流回路电压为额定电压的125%,超过115%的极限设定值;
c) 变频器的进线电压已超过上限;
在轧钢过程中,该变频器控制的辊道电机将升速,当钢离开辊道后辊道电机速度降至原来的速度,因这台变频器未装设制动装置,减速时是通过电压调节器限制制动电流以保持直流回路电压不超过115%的极限设定值(缺省值),因进线电压过高,直流回路电压超过了设定的极限值,在减速时电压调节器起作用,造成制动电流很小,电机转速降不下来,而在轧钢时,电网的负载加重,直流回路电压低于115%的极限设定值,制动功能恢复正常。在当时无法降低电网电压的情况下,将直流回路电压极限设定值增至127% 后,变频器工作正常。在停产检修时,我们根据电网的情况改变了变压器的档位,使变频器的进线电压在允许的范围内,此后变频器工作正常。
(3) AEG Multiverter22/27-400变频器上电后,操作面板上的液晶显示屏显示正常,但ready指示灯不亮,变频器不能合闸
查看变频器菜单中的故障记录时未发现有故障,而对操作面板上各按键的操作在事件记录中则有记录。检查变频器内A10主板、A22电源板上的LED指示灯均正常,用试电笔测变频器的进线电源,发现有一相显示不正常,用万用表测量三相结果为:Vab=390V,Vac=190V,Vbc=190V。经检查系进线端子排处接触不良。
ready指示灯是变频器内各种状态信息的综合反映,当它不亮时可提示维护人员注意变频器尚未就绪 。此时在进线电源不正常时变频器的故障记录中未能反映未就绪的原因,可能与电路的设计有关。
(4) 调试过程中变频器启动后即过流跳闸
变频器供货方与被控设备的供货方因沟通上的原因,在容量上不匹配(电机功率为30kW)。将变频器的控制模式选为矢量控制,在输入电机参数时,变频器自动将电机的额定电流60A限定在45A,电机铭牌上无功率因数的大小,按变频器手册的要求,将其设定为0,在作自动辨识(P088=1)后启动电机时,变频器过流跳闸。考虑到匹配上的原因,将控制模式改为V/F控制,情况依旧。后检查电机参数时,发现功率因数为1.1,将其改为0.85后,变频器工作正常。
因容量不匹配,变频器依据输入的电机参数进行计算时会产生不正确的结果,在遇到这种情况而暂时无法解决匹配问题时,一定要在自动辨识后检查是否存在不合适的参数。
(5) 6SE70系列变频器的PMU面板液晶显示屏上显示字母"E"
出现这种情况时,变频器不能工作,按P键及重新停送电均无效,查操作手册又无相关的介绍,在检查外接DC24V电源时,发现电压较低,解决后,变频器工作正常。
变频器操作手册上的故障对策表中介绍的皆为较常见的故障,在出现未涉及的一些的代码时应对变频器作全面检查。
(6) MM420/MM440变频器的AOP面板仅能存储一组参数
变频器选型手册中介绍AOP面板中能存储10组参数,但在用AOP面板作第二台变频器参数的备份时,显"存储容量不足"。解决办法如下:
a) 在菜单中选择"语言"项;
b) 在"语言"项中选择一种不使用的语言;
c) 按Fn+Δ键选择删除,经提示后按P键确认;
这样,AOP面板就可存储10组参数。造成这种现象的原因可能是设计时AOP面板中的内存不够。
(7) ABB ACS600变频器在运行时直流回路过压跳闸
该变频器配置有制动斩波器和制动电阻,但外方调试人员在调试时将电压控制器选择为ON而未使用制动斩波器和制动电阻。在直流回路过压跳闸后将斩波器和制动电阻投入,结果跳闸更加频繁。变频器操作手册上对直流回路过压原因的解释通常有2点:
a) 进线电压过高;
b) 减速时间太短;
因该变频器已投入运行2个月,且跳闸时进线电压在允许的范围之内,其它变频器工作正常,结合以前处理变频器故障时对直流回路过压的认识,认为在使用电压控制器调节回馈电流防止直流回路过压的情况下,负载电流的变化率过大是引起过压的一个重要原因,到现场查看被控设备时,发现有一块物料卡在传送带的间隙中,清除后,变频器工作正常。拆开变频器外壳检查,发现制动斩波器上设有三档进线电压选择装置(400V、500V、690V)以适应不同的进线电压,其中短接环插在690V档上,这样就造成制动斩波器和制动电阻投入工作的门槛值过高而在进线电压为400V的ACS600变频器中未起作用,将短接环移至400V档,通过减少减速时间试验,制动斩波器和制动电阻工作正常。
5例变频器故障处理过程 (1) 变频器驱动电机抖动 在接修一台安川616PC5-5.5kW变频器时,客户送修时标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。 (2) 变频器频率上不去 在接修一台普传220V,单相,1.5kW变频器时,客户标明频率上不去,只能上到20Hz,此时第一想到的是有可能参数设置不当,依次检查参数,发现最高频率,上限频率都为60Hz,可见不是参数问题,又怀疑是频率给定方式不对,后改成面板给定频率,变频器最高可运行到60Hz,由此看来,问提出在模拟量输入电路上,检查此电路时,发现一贴片电容损坏,更换后,变频器正常。 (3) 变频器跳过流 在接修一台台安N2系列,400V,3.7kW变频器时,客户标明在起动时显示过电流。在检查模块确认完好后,给变频器通电,在不带电机的情况下,启动一瞬间显示OC2,首先想到的是电流检测电路损坏,依次更换检测电路,发现故障依然无法消除。于是扩大检测范围,检查驱动电路,在检查驱动波形时发现有一路波形不正常,检查其周边器件,发现一贴片电容有短路,更换后,变频器运行良好。 (4) 变频器整流桥二次损坏 在接修一台LG SV030IH-4变频器时,检查时发现整流桥损坏,无其它不良之处,更换后,带负载运行良好。不到一个月,客户再次拿来。检查时发现整流桥再次损坏,此时怀疑变频器某处绝缘不好,单独检查电容,正常。单独检查逆变模块,无不良症状,检查各个端子与地之间也未发现绝缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运行,正常运行已有半年多。 (5) 变频器小电容炸裂 在接修一台三肯SVF7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬间,只听"砰"的一声响动,并伴随飞出许多碎屑,断开电源,发现C14电解电容炸裂,此刻想到的是有可能电容装反,于是根据其标识再装一次,再次上电,电容又一次炸裂。于是进一步检查其线路,发现线路与电容标识无法对上,于是将错就错,把电容装反,再次上电,运行正常。这一点在后来送修的相同的机器得以证实。 3 结束语 变频器故障千变万化,相当复杂,唯有认真,唯有学习,方可能解除 !
1)变频器充电起动电路故障 通用变频器一般为电压型变频器,采用交-直-交工作方式,即是输入为交流电源,交流电压三相整流桥整流后变为直流电压,然后直流电压经三相桥式逆变电路变换为调压调频的三相交流电输出到负载。当变频器刚上电时,由于直流侧的平波电容容量非常大,充电电流很大,通常采用一个起动电阻来限制充电电流,常见的变频起动两种电路,如图 1所示。充电完成后,控制电路通过继电器的触点或晶闸管将电阻短路,起动电路故障一般表现为起动电阻烧坏,变频器报警显示为直流母线电压故障,一般设计者在设计变频器的起动电路时,为了减少变频器的体积选择起动电阻,都选择小一些,电阻值在10~50Ω,功率为10~50W。 当变频器的交流输入电源频繁通时,或者旁路接触器的触点接触不良时,以及旁路晶闸管的导通阻值变大时,都会导致起动电阻烧坏。如遇此情况,可购买同规格的电阻换之,同时必须找出引出电阻烧坏的原因。如果故障是由输入侧电源频率开合引起的,必须消除这种现象才能将变频器投入使用;如果故障是由旁路继电器触点或旁路晶闸管引起,则必须更换这些器件。 2)变频器*显示,但不能高速运行 我厂一台变频器状态正常,但调不到高速运行,经检查,变频器并*,参数设置正确,调速输入信号正常,上电运行时测试出现变频器直流母线电压只有 450V左右,正常值为580~600V,再测输入侧,发现缺了一相,故障原因是输入侧的一个空气开关的一相接触不良造成的,为什么变频器输入缺相不报警仍能在低频段工作呢?实际上变频器缺一相输入时,是可以工作的,多数变频器的母线电压下限为400V,即是当直流母线电压降至400V以下时,变频器才报告直流母线低电压故障。当两相输入时,直流母线电压为380*1.2=452V400V。当变频器不运行时,由于平波电容的作用,直流电压也可达到正常值,新型的变频器都是采用PWM控制技术,调压调频的工作在逆变桥完成,所以在低频段输入缺相仍可以正常工作,但因为输入电压低输出电压低,造成异步电机转矩低,频率上不去。 3)变频器显示过流 出现这种故障显示时,首先检查加速时间参数是否太短,力矩提升参数是否太大,然后检查负载是否太重。如果无这些现象,可以断开输出侧的电流互感器和直流侧的霍尔电流检测点,复位后运行,看是否出现过流现象,如果出现的话,很可能是 1PM模块出现故障,因为1PM模块内含有过压过流、欠压、过载、过热、缺相、短路等保护功能,而这些故障信号都是经模块控制引脚的输出Fn引脚传送到微控器的,微控器接收到故障信息后,一方面fēng锁脉冲输出,另一方面将故障信息显示在面板上,一般更换1PM模块。 4)变频器显示过压故障 变频器出现过压故障,一般是雷雨天气,由于雷电串入变频器的电源中,使变频器直流侧的电压检测器动作而跳闸,在这种情况下,通常只须断开变频器电源 1min左右,再合上电源,即可复位;另一种情况是变频器驱动大惯性负载,就出现过压现象,因为这种情况下,变频器的减速停止属于再生制动,在停止过程中,变频器的输出频率按线性下降,而负载电机的频率高于变频器的输出频率,负载电机处于发电状态,机械能转化为电能,并被变频器直流侧的平波电容吸收,当这种能量足够大时,就会产生所谓的"泵升现象",变频器直流侧的电压会超过直流母线的最大电压而跳闸,对于这种故障,一是将减速时间参数设置长些或增大制动电阻或增加制动单元;二是将变频器的停止方式设置为自由停车。 5)电机发热,变频器显示过载 对于已经投入运行的变频器如果出现这种故障,就必须检查负载的状况;对于新安装的变频器如果出现这种故障,很可能是 V/F曲线设置不当或电机参数设置有问题,如一台新装变频器,其驱动的是一台变频电机,电机额定参数为220V/50Hz,而变频器出厂时设置为380V/50Hz,由于安装人员没有正确设定变频器的V/F参数,导致电机运行一段时间后转子出现磁饱和,致使电机转速降低,发热而过载。所以在新变频器使用以前,必须设置好该参数,另外使用变频器的无速度传感器矢量控制方式时,没有正确的设置负载电机的额定电压、电流、容量等参数,也会导致电机热过载,还有一种情形是设置的变频器载波率过高时,也会导致电机发热过载,最后一种情形是电气设计者设计变频器常常在低频段工作,而没有考虑到在低频段工作的电机散热变差的问题,致使电机工作一段时间后发热过载,对于这种,需加装散热装置。
损坏原因
变频器散热不好
其实我们都知道,温度过高对任何设备都具有破坏作用,就像人的大脑那样,温度过高也会把脑子烧坏,其实变频器也一样的。温度升高时,由于半导体对温度的敏感性,逆变管的开通时间和关断时间,以及由延迟电路产生的等待时间,都将发生变化,并且具有比较准确的变化规律。当温度一旦超过某一限值时,将引起"等待时间"的不足,使逆变电路的输出波形出现"毛刺",并最终导致逆变管因直通而损坏。
但就多数设备而言,其破坏作用常常是比较缓慢的,受破坏时的温度通常是不很准确的,而唯dú在变频器逆变电路中,温度一超过某一限值,会立即导致逆变管的损坏,并且该温度限值往往十分精确。
安装环境不准确
变频器是一台全电力半导体设备,所以,它对周围环境的要求也和其他电力半导体设备相同。
1、环境湿度:相对湿度不超过90%(无结露现象)
2、其它条件:在变频器的安装位置应无直射阳光、无腐蚀性气体及易燃qi体、尘埃少、海拔低于1000m等。
3、环境温度:现般要求为-10至40度。如散热条件好(如拿去外壳),则上限温度可以提高到50度。
故障划分
变频器故障监测划分
1、状态故障监测:直流过/久压、直流过流、交流过流、速度偏差过大、接地故障、缺相等。
2、硬件故障检测:电流板故障、触发板故障、IGBT故障、脉冲发生器故障等。
3、系统故障监测:Watchdog故障、系统参数异常、时钟故障等。
4、通讯故障监测:TIMEOUT、OVERRUN等。
5、电源故障监测:当控制电源过高/过低时报警。
欠压故障处理
在变频器维修中我们经常会听到过压故障,但欠压故障也是变频器使用中常碰到的问题。其产生原因是主回路电压低于下限引起的保护动作或整流桥某一路损坏或电网瞬时停电、输入缺相等。
1.比较器检测
通过稳压管固定比较器一端的电压,被检测的电压取样后再与之比较,结果通过比较器输出。
2.ADC检测(模拟/数字转换器)
被检测的电压通过电阻降压取样后,落在ADC可检测的范围,可以通过程序设定电压的报警范围。
主电路中的储能电容,对运行中变频器过压、欠压影响很大。而变频器电路的各种零部件又有一定使用寿命的,所以一旦变频器零部件达到使用寿命就会带来故障的发生。像主电路中的储能电容或其它零部件的原因都有可能对主电路造成影响,从而使整个变频器发生故障。通常变频器停用时间过长,达到一年以上,则应对储能电容要做一次全面体检。
对长时间不用的变频器,如何来避免这种现象发生呢?
按照要求,停用的变频器应每隔两三个月通电-次,每次20~30分钟。对于长时问不用的电解屯容器,通电时,先加约50%的额定电压,只要加压时间在半小时以上,它的漏电流就会降下去,也就可以正常使用了。
此外,对使用年限较长(五年以上)的变频器,也一定要对储能电容器进行容量检测。运行中频繁跳欠电压故障,多数为直流电路的电容器容量不足、有容量下降或失容现象。