技术文章

火焰分光光度计最佳状态表现在几方面

上海奥析科学仪器有限公司 >> 进入商铺

2021/8/17 11:35:51
  火焰分光光度计主要用于分析微量到痕量级的无机元素,可以完成定性和定量分析,具有检出限低、选择性好、精密度高、抗干扰能力强等特点。空心阴极灯提供光源,待测元素通过原子化后对特征波长辐射产生吸收,通过测定此吸收的大小来计算出待测元素的含量。在分析过程中影响测量的可变因素多,各种测量条件不易重复,对测定的灵敏度和准确度影响较大,因此,如何选择和调整仪器的最佳工作状态非常的重要。
  1、环境条件的选择
  具体分析试样时,试样溶液的温度、试样溶液的放置位置及液面高低都对提升速率有很大影响。溶液的粘度随液体的温度而变化。因而液温直接影响溶液的提升速率。故必须保持标准溶液与被测液具有相同的温度,要注意使溶液温度与环境温度保持一致。在安放原子吸收仪的房间,特别要注意防尘,香烟的烟雾、棉毛等有机粉尘在火焰中燃烧,会出现红火星,使噪音升高,重现性变差。安放仪器的房问禁止吸烟。同样要注意气体钢瓶的安放地点。钢瓶不能放在露天,因为钢瓶的气体压力会随温度而发生变化,影响测定结果。最好是安放在仪器隔壁的房间内。
  2、共振线、波长的选择
  每种元素的分析线有很多条,第一共振线灵敏度最高,通常被用来作为分析线,但是也要考虑测定中干扰因素的影响,以保证稳定性。例如测Na时常用589.0nm波长作为分析线,但Na浓度较高时可采用330.0nm波长进行测定。由于空心阴极灯电流大小的变化或单色器传动机构不精密等引起的误差,在实际分析时设置的测量波长的示值可能和理论值不*一致。因此使用仪器时应定期校正吸收波长的位置。
  3、火焰燃烧器
  3.1试液提升量
  试液提升量较小时,虽然雾化效率高,但绝对吸入量低,测定灵敏度低;若提升量太大,则雾化效率降低,大量试液成为废液排出,灵敏度也会受到影响。因此,要选择合适的提升量才能保证测定的灵敏度。试液提升量受吸液毛细管的内径与长度、通入压缩空气的压强、试液的黏度等因素影响,遵循波斯里(Poisuue)公式:V=式中:V—试液提升量,cm3/s;r一毛细管内径,cm;P一压强,Pa;—试液黏度,Pa·s;L—毛细管的长度,cm。当r.P保持恒定,η.L增大,就会降低试液提升量。通常试液提升量选择 3~6ml/min,雾化效率可达10%。
  3.2火焰类型和状态
  选择合适的火焰不仅能提高测定的灵敏度和稳定性,还可以减少干扰。对于易电离、易挥发的元素(如碱金属和部分碱土金属)及易与硫化合的元素(如Sn、Se)可使用Air-C3H8,火焰等低温火焰;对难挥发和易生成氧化物的元素(如Al、Si、Ti等)可使用N2O一C2H:火焰或O2一H2火焰等高温火焰;对其余绝大多数元素(如Cu、Pb、Zn、Cd、Fe、Mn等)多采用Air-C2H2火焰。火焰按状态分为贫焰、化学计量焰、富焰。其中化学计量焰是按照化学计量关系计算的燃料和氧化剂比率燃烧的火焰,具有温度高、干扰少、稳定、背景低等特点,除碱金属和易形成难离解氧化物的元素,大多数常见元素常用这种火焰。
  3.3燃烧器的位置
  为保证测定灵敏度高应使光源发出的锐线光通过火焰中基态原子密度最大的“中间薄层区”。这个区域火焰比较稳定,干扰少,约位于燃烧器狭缝口上方2—10mm附近。若不需要高灵敏度时,欲测试样浓度高时,可以转动燃烧器至适当角度以减少吸收的光程来降低灵敏度。
  4、空心阴极灯
  4.1预热时间
  为使光源稳定,必须对灯进行预热,使灯内原子蒸气的分布及厚度恒定,这样才会使灯内原子蒸气产生的辐射和自吸收稳定。自吸收是指由于阴极内部温度高于外部,阴极外部的原子蒸气会吸收一定的辐射,造成测定灵敏度降低。空心阴极灯在使用前,若在1/3工作电流的情况下预热0.5~1.0h,并定期活化,其工作寿命可达上千小时。更换空心阴极灯时,要小心不能把指纹印在灯宙上。因为灯宙是热的,手上的油污熔化,模糊了灯宙,导致光强度改变引起信号漂移,带入误差。
  4.2工作电流
  火焰原子吸收分光光度计使用光源大都是空心阴极灯,空心阴极灯的操作参数只有一个灯电流。灯电流的大小接影响灯放电的稳定性和锐线光的输出强度,即灯的辐射强度。在一定的范围内增大灯电流可以提高辐射强度,以增强测定灵敏度。但灯电流过大会加快灯内惰性气体的消耗而缩短灯的使用寿命,并造成放电不正常,使灯辐射强度稳定性降低。而如果灯电流过低,透过光就会太弱,需提高光电倍增管灵敏度的增益,此时会增加噪声而造成信噪比严重下降。在实际工作中,要根据被测元素含量高低来调整灯电流的大小,含量较高时使用较大灯电流,含量较低时以保证稳定性为前提降低灯电流,从而确保稳定性和灵敏度。

相关产品

当前客户在线交流已关闭
请电话联系他 :