目前AFM的工作方式有三种,分别是接触模式,非接触模式和敲击模式。
接触模式:
就是利用探针与材料表面直接接触来获得材料结构和形貌信息的方式,这样的方式测试出来的图像分别率高,但是很容易损伤测试材料的表面,探针也会受到材料的污染,同时可能会因为探针与材料表面的粘滞力造成图像失真;
非接触式:
顾名思义就是探针与材料表面没有直接接触,这样的方式就避免了接触模式的一些缺点,探针也不会受到污染,但是由于探针和材料表面不是直接接触的(相距5-10nm),探针和材料表面的原子的作用力较弱,造成了图像的分辨率较低,而且会因为材料的表面张力使得图像变形;
敲击模式:
这是一种较为先进的测试模式,和上述两种方式都不一样,就是探针既不是直接接触材料表面,也不是*脱离表面,而是通过探针不断垂直敲击(大约每秒5×104-50×104次)材料的表面来获得我们所想要的材料表面形貌和结构的信息,这样就既不会损坏材料表面也会得到较高分辨率(当然还是没有接触模式图像分辨率高),因此当检测柔嫩的样品时,AFM的敲击模式是好的选择之一。但是测试的速度相对较慢。
材料领域的应用
1、材料形貌
AFM在水平方向具有0.1-0.2nm的高分辨率,在垂直方向的分辨率约为0.01nm。AFM对表面整体图像进行分析可得到样品表面的粗糙度、颗粒度、平均梯度、孔结构和孔径分布等参数,还可以对测试的结果进行三维模拟,得到更加直观的3D图像。
AFM还可以在分子或原子水平直接观察晶体或非晶体的形貌、缺陷、空位能、聚集能及各种力的相互作用,对于其性能的预测及解释有着重要的作用。
AFM中虽然不能进行元素分析,但它在Phase Image模式下可以根据材料的某些物理性能的不同来提供成分的信息。
2、晶体生长机理
在研究纳米晶生长机理的时候,人们希望用显微手段直接观察到晶面生长的过程,AFM为我们提供了在一个原子级观测研究晶体生长界面过程的全新有效工具。由于AFM的工作条件要求低,它可以晶体生长过程原子级的图像,为完善和修正现有的晶体生长理论提供了强大的技术支撑。