上海迹亚国际商贸有限公司
2022/4/8 17:48:55摘要
标准化细胞移植物、人工器官替代物和生化产品的组织和生物制造需要可控且可重复的离体组织生长培养物,以准确模拟体内环境。生物反应器可以创建这些生理相关环境,并且可以针对特定微生物(例如细胞类型或细菌)进行定制,以优化3D微生物和组织培养。但直到现在,寻找一种时间和成本效益高的生物反应器生产方案仍然是一个挑战。本技术说明提出了使用由 Volumetric和BIO X6™ 提供支持的Lumen X+™设计和制造生物反应器的工作流程解决方案。首先,本技术说明详细介绍了如何在数字光处理 (DLP) Lumen X+ 生物打印机上制造封闭式生物反应器。该技术说明还演示了BIO X6如何在生物反应器内创建精确的共细胞和多细胞培养物以完成工作流程。
培养细胞和细菌让研究人员能够研究活材料和合成生物系统的体外和体内行为,这是一种适用于微生物生物学、机械生物学、疾病建模、药物发现和生物制造等众多领域的有用实验方法(Kapałczyńska, 2016; Shen, 2020; Vukasovic, 2019)。自从 Ross G. Harrison 于 1907 年开发出这项技术 (Harrison, 1907) 以来,2D 培养就一直在进行,它仍然是zui流行的方法之一,尽管它不能准确地模拟自然环境,因为细胞或微生物在烧瓶或培养皿上以单层的形式生长-可能已经或可能没有功能化的培养皿表面(Estermann,2021;Hirt,2015;Kapałczyńska;Shen),极大地改变了微生物特性,从分化到活力再到刺激反应行为再到药物代谢(Kapałczyńska)。因此,二维实验结果很难转化为体内应用,尤其是药代动力学和药效学方面的疾病研究(Hirt;Shen)。为了获得最佳实验性能,当今许多研究人员更喜欢 3D 培养方法。
最近的技术进步和生物打印机的商业可用性使得设计、快速原型制作和可靠地生产 3D 培养变得更加容易。一种流行的方法是在生物反应器中进行 3D 培养,或制造组织工程设备来模拟活细胞的生理环境。生物反应器因其广泛的应用而受到关注,例如移植物(Lee,2021;Notorgiacomo,2021;Tsimbouri,2017;Vukasovic),改善球体和类器官成熟(Cho,2021;Qian,2016;Shen;Velasco,2020),培养干细胞(Rodrigues,2011 年)和制造工程活菌疗法(Charbonneau,2020年)。生物反应器还有可能在降低成本的同时提高实验的可重复性(Franzen,2019年),使研究人员能够更有效地将他们的发现(Morgan,2018年)转化为临床批准的疗法(Sarkar,2015 年)和活体材料植入物。鉴于这些潜力,以下工作流程演示了使用 Lumen X+ 和 BIO X6 来制造具有生物打印、载有细胞的生物材料的生物反应器。
使用的生物反应器是在OnshapeCAD(计算机辅助设计)软件的帮助下设计的,并以两个 STL(标准镶嵌语言)文件导出。生物反应器的两部分包括底部和用于挤出生物打印的隔间(打印室,图2)和用于密封设备并创建封闭生物反应器的盖子。 打印室和盖子均由直径为 10 毫米的网状底部组成,允许封装基质和周围介质之间进行交换。
使用 Lumen X+ DLP 生物打印机和光聚合聚乙二醇二丙烯酸酯 PEGDA500 PhotoInk™ 对生物反应器进行生物打印。 之所以选择 Lumen X+,是因为生物反应器的微米特征尺寸需要精确的光刻(光固化)制造。 PEGDA 已广泛用于生物学,通过细胞粘附域功能化或与 GelMA 等生物材料结合,以封装细胞或创建功能化支架以指导细胞定向和增殖。 PEGDA500 PhotoInk 是一种*的生物相容性和不可降解的 PhotoInk,专为 Lumen X+ 设计。 其强大的机械性能允许创建具有低至 200 µm 分辨率细节的薄壁、微流体装置和*的晶格结构,使其成为创建药物输送装置的理想选择。
将生物反应器的 STL 模型导入 Lumen X+ 并使用 Lumen X+ LightField 软件以 50 µm 的更高分辨率设置进行切片。 Lumen X+ 为每个型号加载了 1 mL 的 PEGDA500 PhotoInk,并根据 PEGDA500 PhotoInk 的协议设置了功率设置。 打印后,构建体被水合,然后使用塑料剃须刀片小心地从构建平台上移除。 然后在去离子水中洗涤生物反应器以去除光吸收染料和未固化的树脂。 最后,在使用挤出生物打印将细胞打印到打印室之前,将构建体以水合状态储存几天。
图 3. 生物反应器室的打印后清洗
光吸收染料具有无毒成分,并且在本技术说明中进行的储存步骤是可选的。为了获得最佳的显微镜条件,建议去除多余的光吸收染料。如果不需要显微镜,则可以在清洗后立即进行基于挤出的生物打印步骤,以去除未固化的 PhotoInk。对于载有细胞的构建体,建议使用平衡缓冲液或细胞培养基作为洗涤溶液。
对于进入打印室的生物打印,使用了配备标准气动打印头和 CELLINK Bioink 的 BIO X6。选择一个直径为 10 毫米、高 1 毫米的圆柱形模型,并使用 DNA Studio 软件进行调整,最终直径为 8 毫米,共三层。固化挤出的生物墨水后,生物反应器盖的边缘用 PEGDA500 覆盖,然后将其放置在打印室的顶部以将其关闭。最后,使用 BIO X6 的 405 nm 光固化模块密封该设备,定位在 3 cm 处以照亮支架 15 秒。密封生物反应器是可选的,打印室可以像Transwell 系统一样单独使用,也可以用于气液界面 (ALI) 培养。
图 4. 生物打印物体实物。
生物反应器可以放置在经典的 24 孔板中,*或部分浸入细胞培养基中。多孔系统允许打印室内的营养物质水合和循环。此外,该生物反应器可以在没有盖子的情况下用作经典的 ALI 系统,用于皮肤组织模型的生长。
除了组织工程应用之外,还可以在生物反应器的腔室中放置其他元件。例如,可以将封装在珠子中的细胞放入培养箱中,通过将系统置于搅拌下,例如 C.BIRD™ 系统 (CYTENA) 进行悬浮培养。另一种方法是使用腔室中的一种介质和井中的一种介质来创建双室配置、梯度系统或基于两种溶液之间交换的动态流动。
通过在生物打印水凝胶的两侧安排细胞,然后通过腔室的孔监测交换、通讯和定殖以进行细胞迁移/侵袭研究,共培养方法也很有趣。该腔室还可以用 ECM(细胞外基质)元件进行功能化以促进细胞粘附,并且可以添加趋化分子以促进迁移。此外,PEGDA500 腔室可以装载药理学分子以形成药物释放支架。