操纵杆的基本原理是将塑料杆的运动转换成计算机能够处理的电子信息。这种基本的设计包括一个安放在带有弹性橡胶外壳的塑料底座上的操纵杆。在底座中操纵杆正下方位置装有一块电路板。电路板由一些“印刷线路”组成,并且这些线路连接到几个接触触点。然后,从这些触点引出普通电线连接到计算机。
印刷线路构成了一个简单的电路(该电路由一些更小的电路构成)。这些线路仅仅将电流从一个触点传送到另一个触点。当操纵杆处于中间位置时,也就是当您还未将操纵杆推向任何一边时,除了一个电路之外的所有其他电路均处于断开状态。由于每条线路中的导体材料并没有连接,因此电路中没有电流通过。
每个断开部分的上方覆盖着一个带有小金属圆片的简单塑料按钮。当您朝任一方向移动操纵杆时,操纵杆便会向下挤压其中的一个按钮,使导电的金属圆片接触到电路板。如此一来,就可以闭合电路,完成两个线路部分的连接。电路闭合之后,电流就会从计算机(或游戏控制台)沿着一条线路流过,穿过印刷线路,通过另外一条线路返回计算机(或游戏控制台)。
分压器
每个分压器由一个卷曲导轨形式的电阻和一个可移动的触臂组成。计算机电源的电流从输入端开始,通过卷曲的电阻和触臂,流回计算机的操纵杆端口。
沿着导轨移动触臂,可以增大或减小作用于流经此电路的电流的电阻值。如果触臂位于与分压器输入连接端相对的另一端,电流将流经整个长度的电阻,因而电流遇到的电阻最大。如果触臂靠近输入端,则分压器的电阻最小。
操纵杆 每个分压器连接到操纵杆的一个轴,因此转动轴将会移动触臂。也就是说,如果将操纵杆向前推动到头,则会将分压器触臂移动到导轨的一端,如果向胸前回拉操纵杆,则将触臂向另一方向移动。
改变分压器的电阻值可以改变接入分压器的电路中的电流。通过这种方式,分压器先将操纵杆的物理位移转换成电信号,再将信号传递到计算机上的操纵杆端口。
此电信号是模拟信号,是一种包含信息的变化的波形,就像无线电信号一样。为了利用这种信息,计算机需要将其转换成数字信息,即精确的数值。
数字化
操纵杆 在传统的系统中,计算机内部的卡(印刷线路板)通过使用非常粗糙的模数转换器完成这个任务。其基本思路是利用每个分压器引起的电压变化为电容充电,电容是一个简单的储存电荷的电子元件(有关更多信息,请参见电容器工作原理)。调节分压器使电阻值越大,电容充电的时间越长;分压器电阻值越小,电容充电速度越快。
先将电容放电然后再计算电容充电所需的时间,通过这个方式转换器以此确定分压器的位置,从而确定操纵杆的位置。测量到的充电速率是计算机可以识别的数值。当计算机需要读取操纵杆位置时,便会执行此操作。
将分压器连接到旋转的部件,可以将这种系统应用到各种控
制系统中。例如,传统的方向盘的工作原理即是如此,通过方向盘直接转动分压器触臂。一些操纵杆还使用一个对应于Z轴的分压器,Z轴由操纵杆自身的转动来带动。 一些操纵杆还带有一个“大高帽”(操纵杆顶部的一个用拇指操控的微型控制器)。这种小型操纵杆使用了与上一节中介绍的简易操纵杆相同的开关系统。
传统的模拟系统总体上可以很好地工作,但确实存在一些限制。在下一节中,我们将探讨模拟系统的主要弊端并了解一些最新的解决方案。