北京精科智创科技发展有限公司 >> 进入商铺
2023/4/4 15:38:10让我们来聊聊“压电陶瓷”-推荐中科院系列压电D33测试仪
单板型压电陶瓷 图片来源:京瓷
陶瓷是古老中国的代名词,历史悠久,种类繁多。陶瓷从花瓶、碗碟等器皿发展到现在的功能陶瓷,主要在于功能陶瓷晶体的微观极化特性的发现。功能陶瓷是以电、磁、声、光、热和力学等信息的存储、检测、耦合及转换等主要特征的介质材料,主要包括压电、介电、热释电和磁性等功能各异的新型陶瓷材料,其中压电陶瓷是功能陶瓷领域的主流材料之一。
中科院声学所ZJ-3系列压电D33系数测试仪是目前应用比较广泛的设备,加上PZT-JH10/4型压电陶瓷极化设备,PZT-JH30/3复合极化设备(块体+PVDF薄膜),ZJ-YP15型陶瓷压片机,ZT-4A型铁电测试仪,GWJDN-1000型高温介电温谱测试仪,这些都是构成了当前功能陶瓷的主要测试设备。
一、什么是压电陶瓷
压电陶瓷是指把氧化物混合(氧化锆、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶体,并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称,是一种能将机械能和电能互相转换的功能陶瓷材料。其中,锆钛酸铅陶瓷简称PZT陶瓷,是一种二元固溶体,它呈现出 ABO3 型的钙钛矿结构,是一种应用极为广泛的压电材料。
二、什么又是压电效应
某些电介质在沿一定方向受外力作用而变形时﹐内部产生极化的同时﹐在晶体的两个相对的表面上出现正负电荷,此现象称为压电效应。压电效应分为正压电效应和逆压电效应。所谓正压电效应是指晶体因机械应力的作用而使其介质化﹐并使其表面荷电的效应。反之﹐当在晶体外部施加电场时,受电场影响的晶体会产生机械形变﹐称为逆压电效应。
正压电效应 逆压电效应
三、为什么能实现“压电”
压电陶瓷要有两个条件:一是晶粒有铁电性;二是经过强直流电场极化处理。所有的铁电单晶都具有压电效应,但是对于铁电陶瓷(陶瓷是多晶体)则需要经过高压直流极化处理。这是因为陶瓷内部的各晶粒虽然存在自发极化,具有铁电性,但是其自发极化电畴的取向是随机的,宏观上并不具有极化强度。在高压直流电场作用下电畴沿电场方向定向排列,而且在电场去除后,这种定向状态大部分能够被保留下来,所以陶瓷呈现压电效应。
压电陶瓷人工极化过程
四、压电陶瓷材料的分类
目前,压电陶瓷体系主要包括钨青铜结构、铋层状结构、钙钛矿结构三大类压电陶瓷材料。
(1)钨青铜结构陶瓷
钨青铜结构是仅次于钙钛矿结构的第二大类铁电体。该晶体也是由氧八面体以共顶点的形式联接而成的。氧八面体以共顶点的形式沿四重轴形成堆垛,各堆垛再以共顶点的形式联接起来。目前被广泛研究体系要有(SrxBa1-x)Nb2O6、(AxSr1-x)NaNb5O15 (A=Ba,Ca,Mg 等)、以及Ba2AgNb5O15等。
特点:具有自发极化强度大、居里温度较高(300℃左右)、介电损耗较低等优点,但是结温度较高,难于制备,而且温度稳定性较差。
钨青铜结构晶胞在(001)面的投影
(2)铋层状结构陶瓷
铋层状结构陶瓷是一种含Bi的有氧八面体的层状结构化合物铁电体。目前研究较多主要包括:Bi4Ti3O12,SrBi4Ti4O15,SrBi2Nb2O9,及其改性的化合物等。
特点:电学性能各向异性明显,机械品质因数高,居里温度高,相对介电常数低,电阻率高,介电击穿强度高,谐振频率的时间和温度稳定性好。但是,此类陶瓷的缺点也很明矫顽场比较高,不容易极化,压电活性较低。
铋层陶瓷结构示意图
(3)钙钛矿结构陶瓷
目前研究泛的晶体结构为钙钛矿结构,该类结构的化学式可写为ABO3型,其中A为一价或二价金属离子,而B为四价或五价金属。半径较大的A正离子,半径较小的B正离子和氧离子分别位于晶胞格子的顶角,体心和面心。被广泛应用研究主要有钛酸钡,钛酸铅,错钛酸铅和 KxNa1-xNbO3等。
钙钛矿结构示意图
五、压电陶瓷的制备工艺
压电陶瓷制备过程主要包括陶瓷原料粉体的合成、成型、烧结、被电极和极化等几个主要过程。在这些过程中,伴随着一系列的物理和化学变化。压电陶瓷的性能与材料的组分和制备工艺有直接的关系,所以一整套稳定合理的工艺参数是获得优异材料性能的重要保证。
工艺名称 | 目的 |
配料 | 进行料前处理,除杂去潮,然后按配方比例称量各种原材料 |
混合磨细 | 一般采取干磨或湿磨的方法。小批量可采取干磨,大批量可采取搅拌球磨或气流粉碎的方法,效率较高。 目的是将各种原料混匀磨细,为预烧进行的固相反应准条件。 |
预烧 | 在高温下,各原料进行固相反应,合成压电陶瓷.此道工序很重要。会直接影响烧结条件及最终产品的性能。 |
二次磨细 | 将预烧过的压电陶瓷粉末再细振混匀磨细。为成瓷均匀性能一致打好基础。 |
造粒 | 使粘合剂更均匀,使成型样品的密度更均匀,排出颗粒间的空气,有利于成型和致密。 |
成型 | 指在较高温度下成型坯体发生体积收缩、密度提高和强度增加的过程。 |
排塑 | 防止因高温下的分解、挥发而导致样品胚体在烧结过程中变形、开裂。 |
烧结成瓷 | 将坯体加热到足够高的温度但低于熔点,使陶瓷坯体体积收缩、密度提高和强度增大的过程。 |
外形加工 | 将烧好的制品磨加工到所需要的成品尺寸。 |
被电极 | 在要求的陶瓷表面设置上导电电极。一般方法有银层烧渗、化学沉积和真空镀膜。 |
高压极化 | 使陶瓷内部电畴定向排列,从而使陶瓷具有压电性能。 |
老化测试 | 陶瓷性能稳定后检测各项指标,看是否达到了预期的性能要求。 |
表1 各制备工艺简介
六、压电陶瓷材料的应用
由于压电陶瓷材料具有正逆压电效应,其在压电传感器、驱动器、换能器和滤波器等器件中得到了广泛的应用。应用范围覆盖航空航天、军事、信息电子、工业机械、医疗、汽车等众多领域。压电陶瓷具有性能高、成本低、易于加工制备等特点,是目前压电驱动器最主要的驱动材料。
压电材料典型应用
总结
压电效应技术以其*的优势在能源需求不断增长的今天﹐得到了日益广泛的应用。其中压电陶瓷是一种重要的功能材料,具有优异的压电、介电和光电等电学性能,被广泛地应用于电子、航空航天、生物等高技术领域。随着新兴领域的飞速发展和经济社会新的发展需求,未来对压电陶瓷的性能会有更高的要求。如:高居里温度、高机电耦合系数和机械品质因数及环保、无铅、复合、纳米压电陶瓷必将成为今后的研究重点。