上海岛通应用科技有限公司 >> 进入商铺
2024/7/19 16:42:05在制造业中,水起到至关重要的作用,可用于处理、加热、冷却、清洗或作为产品的重要成分。然而,工业用水中有90%或以上最终将成为废水1。在再利用或排放到环境之前进行废水处理通常会产生大量成本,但有时也会产生机遇。随着能源和材料成本不断的提高,且消费者和监管机构的要求也越来越高,全球有越来越多的行业面临着可持续性方面的问题。通过处理有毒的废水,化工企业可减少其水足迹并提高水的再利用率,从而实现更好的整体水管理。
对于在缺水和干旱对生产造成威胁的地区运营的化工企业来说,水的回用尤其重要。此外,有毒物质排放可能会影响公司的声誉,公众会要求问责并采取行动纠正这种情况,包括更好的环境保护。
然而,在废水管理方面,成本始终是化工企业的考虑因素之一。因此,尽量减少废水量成为减少废水处理成本的最佳途径。废水处理可根据流量和污染负荷,并结合排水质量要求,组合运用生物、化学和物理等处理手段。现场对水回收的投资可以快速抵消排放罚款和取水成本。这就是整个工厂的总体水足迹和水成本发挥作用的地方。为实现现场水回用,通常需要采用紫外(UV)、离子交换、活性炭、反渗透等先进的处理技术。水处理的要求通常取决于回收水的目的,比如:冷却水的水质要求低于锅炉给水。
水处理策略与实践
各种指导方针旨在限制制造业排放,鼓励工业更高效、更可持续地运营。例如欧盟成员国的工业排放指令,提出最佳可行技术(BAT,Best Available Techniques)和相关排放水平(AEL,Associated Emissions Levels),以指导各部门如何实现合规和改进。同样,美国《清洁水法案(Clean Water Act)》,也在不断发展,以推动废水处理的改进,避免污染或有毒事件。在企业层面,很多公司目前发布了环保项目和长期水质目标,并定期更新最新进展。虽然有部分目标可能相对较低,但对于股东、客户以及当地社区而言是负责任的表现。
其中一项关键BAT技术是在关键位置监测关键工艺参数。出水口过往是监测位置,但只有在上游增设监测才能真正实现优化和成本节约。为实现排水合规,必须确定废水的来源及其对废水处理造成的影响。
运营方应创建工厂的水足迹图,以确定可能存在污染的区域以及有优化潜力的区域。然后,可根据水足迹图增设监测点,获取相关重要数据并做好水处理决策。通过水足迹图,工厂可确定目前的“痛点”并确保理解数据的目的所在。收集整个工厂的实验室数据通常是一个很好的起点。最初,如果多台工艺装置间没有变化,则可以认为它们是非关键点。但是,当处理阶段或处理步骤导致水质或水量发生显着变化时,运营方应将其视为关键控制点。
为确定需监测的参数,除了原水和排水的质量之外,工厂需要仔细研究现场的处理方式和产品。如,在化工行业中,基础化学品或大宗化学品为塑料和聚合物,通常是能源行业和消费品的重要材料。因为原材料为有机化合物,所以此类化学品制造排放的废水通常含有含量的有机物,而且随生产发生剧烈变化。因此,为符合相关法规要求,很多制造商均设计采用缓冲罐来处理高浓度和低浓度。
在特种化学品方面,材料由氮、硫、氯化合物等无机物制成。有时,环境或加工过程中的有机化合物会干扰纯度或加工效率。例如,氯碱生产使用饱和盐水和膜电解来生产氯和相关产品。回收盐水存在有机污染物积累的风险。有机污染会污染膜系统并导致计划外维护。跟踪污染物可以帮助保护膜系统免受损坏并保持生产力。
除了温度、压力、流量、pH 值和电导率等物理和基本化学参数外,操作员还应考虑它们如何影响工艺控制、合规性和产品质量。就排放到环境中的物质而言,常见的关注参数包括有机物、无机物和营养物。有机物和营养物(碳、氮、磷)会导致藻类爆发和富营养化,影响当地环境,必须通过处理去除。这就是为什么监测和消除有机污染至关重要。
检测方法
许多地区检测需氧量是为了表明排放到环境中的有机物含量。生物需氧量BOD通过检测样品中化合物在五天或更长时间内的生物降解情况来实现这一点。由于消毒剂和清洁剂的干扰,其精度和灵敏度有限。化学需氧量COD使用强氧化剂(有时含毒性)在两到三个小时内化学分解样品中的化合物。然而,COD对有机物没有选择性,并且包括亚硝酸盐、氨和亚硫酸盐等无机物。含铁化合物也会影响COD检测的准确性。这使得在此过程中很难做出可操作的决策。例如,如果COD很高,很难确定它是来自有机物还是氨。由于重复性和灵敏度问题,如果废水中的BOD很低,低于20 ppm,则很难确保低于20 ppm的限值。
运营方通过将有机物氧化成二氧化碳,然后检测所得的二氧化碳来确定TOC。有多种技术可以检测TOC,包括TOC分析仪和尝试与分析仪关联的TOC传感器。传感器的缺点是,虽然速度更快,但它们存在干扰,关键化合物的回收率不足,并且只能捕获一部分有机物。
TOC分析仪有不同的氧化技术和检测技术,具体取决于所需的应用。当检测与锅炉给水结合并产生蒸汽的回流冷凝水时,则所采用的技术必须能确定样品中确实不存在污染物。在这种情况下,灵敏度和速度是检测任何偏差的关键。对于其他应用,例如跟踪废水的负荷和污染度变化,稳固性是处理盐、固体、无机物和高有机负荷所需的关键属性。
对于所有应用而言,与TOC检测技术同样重要的是TOC分析仪投入使用后以及整个工艺过程监测计划成功实施过程中的支持。除了性能之外,维护、附加参数、验证和自动化都是需要考虑的因素。在考虑成本和节水工作时必须考虑这些因素。分析工具旨在帮助回答问题并推动决策,因此企业可以从废水处理优化甚至现场回收的机会中受益。
Sievers® TOC-R3在线TOC分析仪维护需求低、在线时间长,能使工业制造商提高盈利、避免停机、降低维护成本
尽一切努力合规并提高可持续性
改进工业用水管理为化工企业提供了确保遵守不断变化的法规、改善其公众形象、满足消费者需求、促进强大的环境和可持续文化并降低成本的机会。为了实现这些利益,企业必须衡量处理有效性、是否合规以及处理效率。除了废水优化之外,企业还可以通过监测策略了解与用水相关的其他潜在改进。例如,他们可以使用实际的清洁度数据来改善化学品和水的使用,而不是根据估计的清洁时间或循环次数做出决策。这些数据驱动的决策可以帮助化工企业避免过度清洁、最大限度地减少产品浪费并节省资源。他们还可以使用这些监测技术来跟踪蒸汽系统的供水,以保护热交换器、冷凝器等设备免受有害污染物的影响。
控制工业用水能造福于各行业的制造商,原因不仅限于合规和成本,还因为管理工业用水能为改善运营、实现可持续发展目标和满足消费者需求,提供机遇。通过监测整个工厂的关键控制点,可减轻废水处理压力(特别是面向消费者的行业),从而更好地控制工业废水。改善污染跟踪的技术可帮助化工企业快速做出决策,确保合规并把握水回收和再利用的机会。
作者:Amanda Tyndall
Amanda Tyndall是Sievers分析仪工业与环境市场产品经理。Amanda在水处理行业具有10多年经验。Amanda及其团队在工业和市政领域,通过从超纯水到废水检测的仪器解决方案,为客户解决水质挑战。Amanda拥有化学工程背景,获得范德堡大学(Vanderbilt University)学士学位和剑桥大学(University of Cambridge)硕士学位。
参考文献