迈可诺技术有限公司 >> 进入商铺
2024/8/26 16:51:30空·穴·传·输·层
.2
01
Spiro-OMeTAD
Spiro-OMeTAD是PSC中常用的空穴传输层之一。它定期生产高效PSC,并用于当前的世界器件8。
Spiro-OMeTAD可以进行纯溶液处理,没有退火步骤,这意味着它可以在低温下轻松处理。事实上,Spiro-OMeTAD HTL已被证明与大规模钙钛矿生产兼容,Di Giacomo等人创建了超过10%PCE的>15cm²的器件12,Kim等人的研究表明,采用卷到卷工艺创建的Spiro-OMeTAD器件的PCE高达13.8%13。
然而,Spiro-OMeTAD需要添加几种掺杂剂,以实现最大的导电性、空穴迁移率,并确保这些掺杂剂溶解在氯苯中。此外,越来越多的实验数据表明,Spiro-OMeTAD可能会给PSC器件带来长期稳定性问题14。这种劣化与上述掺杂剂有关,因此许多研究正在寻找用Zn-TFSI、Mg-TFSI₂和Ca-TFSI₂取代这些掺杂剂,到目前为止,在器件稳定性方面已经得到了改进。
由于Spiro-OMeTAD是(目前)常用的HTL,因此我们列出了我们最喜欢的在常规钙钛矿太阳能电池结构中创建“Spiro”层的配方。
· 85mg/ml Spiro-OMeTAD(纯度< 99.5%)溶解于氯苯中,并使其溶解2小时。
· 按照以下顺序将掺杂剂加到该储备溶液:
①.LiTFSI:从500mg/ml储备液(溶解在乙腈中)中加入20μl/ml,剧烈溶解1分钟。
②.tBP:来自储备溶剂的34 μl/ml,溶解1分钟。
③.Fk209 Co(III) TFSI Salt:从300mg/ml储备液(溶解在乙腈中)中加入11μl/ml,溶解1分钟。
· 该层应沉积在手套箱等惰性环境中,溶液应在沉积前立即用0.2µm过滤器过滤。
· 应将25μl该溶液以4000 rpm的转速动态旋涂到钙钛矿层上30秒。然后,在进一步处理之前,将其在黑暗干燥的空气中放置过夜,以使Spiro OMeTAD氧化。
02
PTAA
聚[双(4-苯基)(2,4,6-三甲苯基)胺(PTAA)是PSC的另一个空穴传输层。它具有许多与Spiro相同的性质,因为它是一种小的有机分子,但通常需要掺杂剂来实现这些高性能——与Spiro OMeTAD器件(即LiTFSI)中存在问题的掺杂剂相同。因此,更稳定的掺杂剂(例如Lewis酸掺杂剂)已经被用于产生PCE > 19%的PTTA钙钛矿器件,其显示出良好的器件稳定性15。
还证明了无掺杂剂的PTAA可以与PCBM一起用作ETL的倒置器件,并且这些器件也显示出良好的性能16。
03
PEDOT:PSS
PEDOT:PSS(聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐)经常用于倒置钙钛矿太阳能电池器件中,并用于第一个固体PSC器件中,实现3.8%的效率17。
PEDOT:PSS具有良好的润湿性,在绿色溶剂中具有良好的溶解性,并且在可见光区非常透明。18然而,它的电导率比较低,因为PSS是分子的一部分,是层中的隔离剂,并且该材料与大多数钙钛矿材料的能级不匹配。
此外,PEDOT:PSS会吸收周围的水分,这在钙钛矿堆叠时会造成严重破坏。掺杂PEDOT:PSS可以改善材料的电荷载流子动力学、功函数和整体薄膜形态,从而获得更好的PSC。然而,挑战仍然是同时改善所有这些性能。
截至2019年,使用这种HTL实现的最高钙钛矿太阳能电池效率涉及用CsI掺杂PEDOT:PSS19。这降低了HTL的功函数,减少了PEDOT:PSS和钙钛矿之间的能垒,从而增加了空穴提取。Xhang等人发现掺杂NiPcS4的PEDOT:PSS的功函数略高于单独的PEDOT/PSS20。然而,这种掺杂也显著增加了低未占据分子轨道(LUMO ),这使得能够通过该层进行必要的电子阻挡。
相反,这导致了更高的JSC,以及更好、更稳定的器件。
不·同·钙·钛·矿·层
.3
01
CsFAMAPb(IxB1-x)3
我们在这里研究的是1.2M的高性能三重阳离子钙钛矿(CsFAMAPb(IxBr1-x)3),并带有4∶1的DMF/DMSO溶剂混合物。混合卤化物(碘和溴)和混合阳离子(methylammonium, MA, formamidinium, FA and Cesium, Cs)PSC一直生产出稳定性和耐用性相对较高的器件。直到过去几年,TC设备已经产生出了世界纪录的PCE25–27。通常,这些钙钛矿在惰性环境中进行处理以获得最佳性能,但是这些钙钛矿用途极其广泛。2020年,Bishop等人展示了一种使用这种TC油墨的全喷涂PSC装置,其小面积效率为19.4%28,并且这种油墨已被证明是兼容的、可扩展的技术,如空气叶片淬火29。然而,三阳离子钙钛矿也存在一些问题。例如,甲基铵极易挥发,热不稳定,在有氧气或湿气的情况下会降解。因此,在PSC中使用它们会显著降低器件的寿命。然而,当正确封装时,这些PSC在几个月内表现出良好的性能。
在这里,我们使用上述前驱体制造器件,使用匀胶机按照以下旋转退火步骤,将50µl的前驱体静态旋涂到SnO2涂层的衬底上:
步骤 | 旋转速度 | 持续时间 | 评论 |
摊开 | 200转/秒 | 直到达到2000 rpm | |
旋转1 | 2000转 | 10s | |
旋转2 | 4000转 | 30s | 用100升反溶剂在20秒内淬灭 |
退火 | 30分钟 | 在100℃下退火 |
在钙钛矿沉积过程中,手套箱一直在不断循环氮气压缩气体,以避免溶剂在主室内积聚。随后,如关于如何在手套箱中制造高效钙钛矿太阳能电池的描述,沉积Spiro OMeTAD和Au层“在钙钛矿和HTL沉积后2天对器件进行了测试。在处理时,所有低于<10%PCE或<0.5 VOC的器件都被去除。这些结果总结如下。如下图所示,6个像素的6个器件的平均PCE为16.4±1.8%。单个像素实现的最高PCE为19.0%,在1分钟内稳定在17.6%。
6个三重阳离子器件的器件指标(左)和最佳器件的固定功率点跟踪JV扫描(右)
02
CsFAPbI3
由于甲铵基钙钛矿(methylammonium-based perovskites)的各种不稳定性,在设计稳定、高性能的PSC时,formamidinium base perovskites是一个有吸引力的选择。FAPbI3的带隙也比MAPbI3更低,这意味着它可以吸收更大比例的太阳光谱。这将导致更高的光电流,从而提高器件效率31.
然而,FAPbI3是相不稳定的,并且需要高温才能转化为钙钛矿太阳能电池所需的黑色(α-)相,从而落入吸收性较低的非钙钛矿(β-)相。
最近出现了formamidinium base perovskites的激增,其在不使用甲基铵阳离子来稳定α-钙钛矿相的情况下表现出令人惊叹的器件稳定性。目前(截至2021年11月),经认证的最高性能钙钛矿器件是掺杂的基于FAPbI3的钙钛矿,实现了25.5%的PCE8,并且还有其他几个使用基于FAPbI3的钙钛矿非常成功的例子7,32,33,包括具有20.77cm²活性面积的槽模涂器件,实现了16.6%的PCE。
在这里,我们使用这种钙钛矿前驱体制造了一些器件,其中50µl通过以下旋转退火步骤静态旋涂到SnO2涂层的衬底上:
步骤 | 旋转速度 | 持续时间 | 评论 |
旋转 | 5000转 | 50s | |
退火1 | 5分钟 | 70℃ | |
退火2 | 10分钟 | 手套箱外150℃ |
在钙钛矿沉积过程中,手套箱不断循环氮气以避免溶剂在手套箱室内积聚。随后,沉积Spiro OMeTAD和Au层,并且在钙钛矿和HTL沉积后1天测试器件。在处理过程中,我们移除了所有PCE小于10%或VOC小于0.5 V 的器件。图中显示了所有器件的器件指标,以及器件的JV扫描和固定功率跟踪。
七个器件的平均器件性能为14.0±2.0%,最高器件扫描为17.0%,1分钟后稳定在16.0%。
由CsFAPbI₃制成的PSC的器件指标最佳器件的前驱(左)和JV扫描和稳定功率点跟踪(右)
03
MAPbI3
MAPbI3是PSC中最早使用的钙钛矿制剂之一。这里,将1.1M MAI与1.1M PbI2溶于DMF中。这通常是一种高性能的钙钛矿,并且可以在相对较低的温度下进行处理30。它们主要使用甲基铵作为A阳离子会导致一些内在的不稳定性,因此,尽管它们最初可能具有优异的性能,但如果封装不当,器件可能会在几天内恶化。
同样地,我们使用这种钙钛矿前驱体制造了一些器件,其中50µl通过以下旋转退火步骤静态旋涂到SnO2涂层的衬底上:
步骤 | 旋转速度 | 持续时间 | 评论 |
旋转1 | 2000转 | 10s | |
旋转2 | 5000转 | 30s | 用300 l反溶剂在20秒内淬灭 |
退火 | 20分钟 | 100℃ |
这些层被沉积在手套箱中。然而,不需要氮气循环来获得最佳的器件性能。旋涂后,沉积Spiro OMeTAD和Au层,并在钙钛矿和HTL沉积一天后测试器件。加工时,所有< 10%PCE或< 0.5 VOC的器件都被去除。结果总结如下。
如下图所示,3个6像素器件的平均PCE为17.6±1.1%,单像素的PCE为19.3%,在1分钟内稳定在18.4%。
基于MAPbI₃的PSC器件指标最佳器件的前驱体(左)和JV扫描和稳定功率点跟踪(右)
04
I301
在这里,我们已经使用我们的I301三阳离子钙钛矿油墨制造了一些器件。这使用二甲基亚砜(dimethyl sulfoxide)作为主要溶剂,使其成为更稳定的钙钛矿溶液34,但它具有与前述三阳离子油墨相同的化学计量(CsFAMAPb(IxBr1-x)3)。使用以下旋转退火步骤将其中50µl静态旋涂到SnO2涂覆的衬底上:
步骤 | 旋转速度 | 持续时间 | 评论 |
旋转1 | 1000转 | 10s | |
旋转2 | 3000转 | 28s | 18秒后用100升反溶剂淬灭 |
退火 | 10分钟 | 150℃ |
这里,所有< 10%PCE和< 0.4 Voc的器件都已移除。我们在淬火过程中使用了两种不同的抗溶剂,以确定这是否会显著影响器件性能。从下图中可以看出,事实并非如此。使用乙酸乙酯作为反溶剂制备的I301器件的平均器件性能为17.1±0.7%,最佳性能为18.5%,而使用苯甲醚作为反溶剂的器件的平均PCE为17.3±1.3%,器件为19.4%。这表明使用一系列反溶剂可以制备高性能钙钛矿太阳能电池。
由I301前驱体制成的PSC的器件指标(左)和最佳器件的JV扫描(右)
钙钛矿器件比较
这是一张比较这些PSC的表格。在这里,我们介绍了如何在手套箱环境中制造良好的钙钛矿层,并证明了用这些层可以形成良好的PSC。
参考
8.Perovskite Solar Cells With Atomically Coherent Interlayers On SnO2 Electrodes, H. Min et al., Nature, 598 (7881), 444–450 (2021); DOI: 10.1038/s41586-021-03964-8.
9.High Efficiency Low-Temperature Processed Perovskite Solar Cells Integrated With Alkali Metal Doped ZnO Electron Transport Layers, R. Azmi et al., ACS Energy Lett., 3 (6), 1241–1246 (2018); DOI: 10.1021/acsenergylett.8b00493.
10.Triple Cathode Buffer Layers Composed Of PCBM, C60, And LiF For High-Performance Planar Perovskite Solar Cells, X. Liu et al., ACS Appl. Mater. Interfaces, 7 (11), 6230–6237 (2015); DOI: 10.1021/acsami.5b00468.
11.Hysteresis-Free Low-Temperature-Processed Planar Perovskite Solar Cells With 19.1% Efficiency, H. Yoon et al., Energy Environ. Sci., 9 (7), 2262–2266 (2016); DOI: 10.1039/C6EE01037G.
12.Up-Scalable Sheet-To-Sheet Production Of High Efficiency Perovskite Module And Solar Cells On 6-In. Substrate Using Slot Die Coating, F. Di Giacomo et al., Sol. Energy Mater. Sol. Cells, 181 (November 2017), 53–59 (2018); DOI: 10.1016/j.solmat.2017.11.010.
13.Roll-To-Roll Gravure-Printed Flexible Perovskite Solar Cells Using Eco-Friendly Antisolvent Bathing With Wide Processing Window, Y. Y. Kim et al., Nat. Commun., 11 (1), 1–11 (2020); DOI: 10.1038/s41467-020-18940-5.
14.A Brief Review Of Hole Transporting Materials Commonly Used In Perovskite Solar Cells, S. Li et al., Rare Met., 40 (10), 2712–2729 (2021); DOI: 10.1007/s12598-020-01691-z.
15.Novel Approach Toward Hole-Transporting Layer Doped By Hydrophobic Lewis Acid Through Infiltrated Diffusion Doping For Perovskite Solar Cells, J. Luo et al., Nano Energy, 70 (October 2019), 104509 (2020); DOI: 10.1016/j.nanoen.2020.104509.
16.Achieving Efficient Inverted Planar Perovskite Solar Cells With Nondoped PTAA As A Hole Transport Layer, Q. Zhao et al., Org. Electron., 71 (January), 106–112 (2019); DOI: 10.1016/j.orgel.2019.05.019.
17.CH 3 NH 3 PbI 3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, J.-Y. Jeng et al., Adv. Mater., 25 (27), 3727–3732 (2013); DOI: 10.1002/adma.201301327.
18.Recent Progress Of Inverted Perovskite Solar Cells With A Modified PEDOT:PSS Hole Transport Layer, W. Han et al., ACS Appl. Mater. Interfaces, 12 (44), 49297–49322 (2020); DOI: 10.1021/acsami.0c13576.
19.Inverted Planar Perovskite Solar Cells Based On CsI-Doped PEDOT:PSS With Efficiency Beyond 20% And Small Energy Loss, K. Jiang et al., J. Mater. Chem. A, 7 (38), 21662–21667 (2019); DOI: 10.1039/c9ta08995k.
20.Facile Phthalocyanine Doping Into PEDOT Leads To Highly Efficient And Stable Inverted Metal Halide Perovskite Solar Cells, X. F. Zhang et al., J. Mater. Chem. A, 6 (26), 12515–12522 (2018); DOI: 10.1039/c8ta03541e.
21.Self-Assembled Monolayers As Interface Engineering Nanomaterials In Perovskite Solar Cells, S. Y. Kim et al., Adv. Energy Mater., 10 (44), (2020); DOI: 10.1002/aenm.202002606.
22.Interface Engineering In Planar Perovskite Solar Cells: Energy Level Alignment, Perovskite Morphology Control And High Performance Achievement, G. Yang et al., J. Mater. Chem. A, 5 (4), 1658–1666 (2017); DOI: 10.1039/c6ta08783c.
23.Semiconductor Self-Assembled Monolayers As Selective Contacts For Efficient PiN Perovskite Solar Cells, E. Yalcin et al., Energy Environ. Sci., 12 (1), 230–237 (2019); DOI: 10.1039/c8ee01831f.
24.Self-Assembled Hole Transporting Monolayer For Highly Efficient Perovskite Solar Cells, A. Magomedov et al., Adv. Energy Mater., 8 (32), 1801892 (2018); DOI: 10.1002/aenm.201801892.
25.Stable Triple Cation Perovskite Precursor For Highly Efficient Perovskite Solar Cells Enabled By Interaction With 18C6 Stabilizer, X. Wu et al., Adv. Funct. Mater., 30 (6), (2020); DOI: 10.1002/adfm.201908613.
26.Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility And High Efficiency, M. Saliba et al., Energy Environ. Sci., 9 (6), 1989–1997 (2016); DOI: 10.1039/C5EE03874J.
27.Dopant‐Free, Amorphous–Crystalline Heterophase SnO 2 Electron Transport Bilayer Enables >20% Efficiency In Triple‐Cation Perovskite Solar Cells, H. B. Lee et al., Adv. Funct. Mater., 30 (24), 2001559 (2020); DOI: 10.1002/adfm.202001559.
28.Fully Spray-Coated Triple-Cation Perovskite Solar Cells, J. E. Bishop et al., Sci. Rep., 10 (1), 1–8 (2020); DOI: 10.1038/s41598-020-63674-5.
29.Ambient Air Blade-Coating Fabrication Of Stable Triple-Cation Perovskite Solar Modules By Green Solvent Quenching, L. Vesce et al., Sol. RRL, 5 (8), 1–11 (2021); DOI: 10.1002/solr.202100073.
30.High-Performance Perovskite Single-Junction And Textured Perovskite/Silicon Tandem Solar Cells Via Slot-Die Coating, A. S. Subbiah et al., ACS Energy Lett., 5 (9), 3034–3040 (2020); DOI: 10.1021/acsenergylett.0c01297.
31.Formamidinium Lead Trihalide: A Broadly Tunable Perovskite For Efficient Planar Heterojunction Solar Cells, G. E. Eperon et al., Energy Environ. Sci., 7 (3), 982 (2014); DOI: 10.1039/c3ee43822h.
32.Slot-Die Coating Large-Area Formamidinium-Cesium Perovskite Film For Efficient And Stable Parallel Solar Module, Z. Yang et al., Sci. Adv., 7 (18), 1–14 (2021); DOI: 10.1126/sciadv.abg3749.
33.Stable Perovskite Solar Cells With Efficiency Exceeding 24.8% And 0.3-V Voltage Loss, M. Jeong et al., Science (80-. )., 369 (6511), 1615–1620 (2020); DOI: 10.1126/science.abb7167.
34.Perovskites On Ice: An Additive‐Free Approach To Increase The Shelf‐Life Of Triple‐Cation Perovskite Precursor Solutions, M. E. O’Kane et al., ChemSusChem, n/a (n/a), cssc.202100332 (2021); DOI: 10.1002/cssc.202100332.