东莞市广联自动化科技有限公司 >> 进入商铺
2024/10/24 11:10:23安沃驰AVENTICS气缸工作原理以及种类介绍
单向阀装在活塞上(如挡板式单向阀);缸壁上开孔、开沟槽、缸内滑柱式、机械浮动联结式、行程阀控制快速趋近式等。活塞上有挡板式单向阀的气-液阻尼缸见图42.2-7。活塞上带有挡板式单向阀,活塞向右运动时,挡板离开活塞,单向阀打开,液压缸右腔的油通过活塞上的孔(即挡板单向阀孔)流至左腔,实现快退,用活塞上孔的多少和大小来控制快退时的速度。活塞向左运动时,挡板挡住活塞上的孔,单向阀关闭,液压缸左腔的油经节流阀流至右腔(经缸外管路)。调节节流阀的开度即可调节活塞慢进的速度。其结构较为简单,制造加工较方便。图42.2-8为采用机械浮动联接的快速趋近式气-液阻尼缸原理图。靠液压缸活塞杆端部的T形顶块与气缸活塞杆端部的拉钩间有一空行程s1,实现空程快速趋近,然后再带动液压缸活塞,通过节流阻尼,实现慢进。返程时也是先走空行程s1,再与液压活塞一起运动,通过单向阀,实现快退。表42.2-3气-液阻尼缸调速特性及应用调速方式结构示意图特性曲线作用原理应用双向节流调速在气-液阻尼缸的回油管路装设可调式节流阀,使活塞往复运动的速度可调并相同适用于空行程及工作行程都较短的场合(s<20mm)单向节流调速将一单向阀和一节流阀并联在调速油路中。活塞向右运动时,单向阀关闭,节流慢进;活塞向左运动时,单向阀打开,不经节流快退。适用于空行程较短而工作行程较长的场合快速趋近单向节流调速将液压缸的?点与α点用管路相通,活塞开始向右运动时,右腔油经由fgea回路直接流入α端实现快速趋近,当活塞移过?点,油只能经节流阀流入α端,实现慢进,活塞向左运动时,单向阀打开,实现快退。由于快速趋近,节省了空程时间,提高了劳动生产率。是各种机床、设备的方式图42.2-7活塞上有挡板式单向阀的气-液阻尼缸图42.2-8浮动联接气-液阻尼缸原理图1-气缸;2?顶丝;3?T形顶块;4?拉钩;5?液压缸1?图42.2-9是又一种浮动联接气-液阻尼缸。与前者的区别在于:T形顶块和拉钩装设位置不同,前者设置在缸外部。后者设置在气缸活塞杆内,结构紧凑但不易调整空行程s1(前者调节顶丝即可方便调节s1的大小)。1.2.4特殊气缸(1)冲击气缸图42.2-9浮动联接气-液阻尼缸冲击气缸是把压缩空气的能量转化为活塞、活塞杆高速运动的能量,利用此动能去做功。冲击气缸分普通型和快排型两种。1)普通型冲击气缸普通型冲击气缸的结构见图42.2-10。与普通气缸相比,此种冲击气缸增设了蓄气缸1和带流线型喷气口4及具有排气孔3的中盖2。其工作原理及工作过程可简述为如下五个阶段(见图42.2-11):第一阶段:复位段。见图42.2-10和图42.2-11a,接通气源,换向阀处复位状态,孔A进气,孔B排气,活塞5在压差的作用下,克服密封阻力及运动部件重量而上移,借助活塞上的密封胶垫封住中盖上的喷气口4。中盖和活塞之间的环形空间C经过排气小孔3与大气相通。最后,活塞有杆腔压力升高至气源压力,蓄气缸内压力降至大气压力。第二阶段:储能段。见图42.2-10和图42.2-11b,换向阀换向,B孔进气充入蓄气缸腔内,A孔排气。由于蓄气缸腔内压力作用在活塞上的面积只是喷气口4的面积,它比有杆腔压力作用在活塞上的面积要小得多,故只有待蓄气缸内压力上升,有杆腔压力下降,
油只能经节流阀流入α端,实现慢进,活塞向左运动时,单向阀打开,实现快退。由于快速趋近,节省了空程时间,提高了劳动生产率。是各种机床、设备的方式图42.2-7活塞上有挡板式单向阀的气-液阻尼缸图42.2-8浮动联接气-液阻尼缸原理图1-气缸;2?顶丝;3?T形顶块;4?拉钩;5?液压缸1?图42.2-9是又一种浮动联接气-液阻尼缸。与前者的区别在于:T形顶块和拉钩装设位置不同,前者设置在缸外部。后者设置在气缸活塞杆内,结构紧凑但不易调整空行程s1(前者调节顶丝即可方便调节s1的大小)。1.2.4特殊气缸(1)冲击气缸图42.2-9浮动联接气-液阻尼缸冲击气缸是把压缩空气的能量转化为活塞、活塞杆高速运动的能量,利用此动能去做功。冲击气缸分普通型和快排型两种。1)普通型冲击气缸普通型冲击气缸的结构见图42.2-10。与普通气缸相比,此种冲击气缸增设了蓄气缸1和带流线型喷气口4及具有排气孔3的中盖2。其工作原理及工作过程可简述为如下五个阶段(见图42.2-11):第一阶段:复位段。见图42.2-10和图42.2-11a,接通气源,换向阀处复位状态,孔A进气,孔B排气,活塞5在压差的作用下,克服密封阻力及运动部件重量而上移,借助活塞上的密封胶垫封住中盖上的喷气口4。中盖和活塞之间的环形空间C经过排气小孔3与大气相通。最后,活塞有杆腔压力升高至气源压力,蓄气缸内压力降至大气压力。第二阶段:储能段。见图42.2-10和图42.2-11b,换向阀换向,B孔进气充入蓄气缸腔内,A孔排气。由于蓄气缸腔内压力作用在活塞上的面积只是喷气口4的面积,它比有杆腔压力作用在活塞上的面积要小得多,故只有待蓄气缸内压力上升,有杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。式中d??中盖喷气口直径(m);
安沃驰AVENTICS气缸工作原理以及种类介绍
p30??活塞开始移动瞬时蓄气缸腔内压力(绝对压力)(Pa);p20??活塞开始移动瞬时有杆腔内压力(绝对压力)(Pa);G??运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N);D??活塞直径(m);d1??活塞杆直径(m);F?0??活塞开始移动瞬时的密封摩擦力(N)。若不计式(42.2-1)中G和F?0项,且令d=d1,,则当时,活塞才开始移动。这里的p20、p30均为绝对压力。可见活塞开始移动瞬时,蓄气缸腔与有杆腔的压力差很大。这一点很明显地与普通气缸不同。图42.2-10普通型冲击气缸第三阶段:冲击段。活塞开始移动瞬时,蓄气缸腔内压力p30可认为已达气源压力ps,同时,容积很小的无杆腔(包括环形空间C)通过排气孔3与大气相通,故无杆腔压力p10等于大气压力pa。由于pa/ps大于临界压力比0.528,所以活塞开始移动后,在最小流通截面处(喷气口与活塞之间的环形面)为声速流动,使无杆腔压力急剧增加,直至与蓄气缸腔内压力平衡。该平衡压力略低于气源压力。以上可以称为冲击段的第I区段。第I区段的作用时间极短(只有几毫秒)。在第I区段,有杆腔压力变化很小,故第I区段末,无杆腔压力p1(作用在活塞全面积上)比有杆腔压力p2(作用在活塞杆侧的环状面积上)大得多,活塞在这样大的压差力作用下,获得很高的运动加速度,使活塞高速运动,即进行冲击。在此过程B口仍在进气,蓄气缸腔至无杆腔已连通且压力相等,可认为蓄气-无杆腔内为略带充气的绝热膨胀过程。同时有杆腔排气孔A通流面积有限,活塞高速冲击势必造成有杆腔内气体迅速压缩(排气不畅),有杆腔压力会迅速升高(可能高于气源压力)这必将引起活塞减速,直至下降到速度为0。以上可称为冲击段的第Ⅱ区段。可认为第Ⅱ区段的有杆腔内为边排气的绝热压缩过程。整个冲击段时间很短,约几十毫秒。见图42.2-11c。图42.2-11普通型冲击气缸的工作原理1?蓄气缸;2?中盖;3?排气孔;4?喷气口;5?活塞第四阶段:弹跳段。在冲击段之后,从能量观点来说,蓄气缸腔内压力能转化成活塞动能,而活塞的部分动能又转化成有杆腔的压力能,结果造成有杆腔压力比蓄气-无杆腔压力还高,即形成“气垫”,使活塞产生反向运动,结果又会使蓄气-无杆腔压力增加,且又大于有杆腔压力。如此便出现活塞在缸体内来回往复运动?即弹跳。直至活塞两侧压力差克服不了活塞阻力不能再发生弹跳为止。待有杆腔气体由A排空后,活塞便下行至终点。第五阶段:耗能段。活塞下行至终点后,如换向阀不及时复位,则蓄气-无杆腔内会继续充气直至达到气源压力。再复位时,充入的这部分气体又需全部排掉。可见这种充气不能作用有功,故称之为耗能段。实际使用时应避免此段(令换向阀及时换向返回复位段)。对内径D=90mm的气缸,在气源压力0.65MPa下进行实验,所得冲击气缸特性曲线见图42.2-12。上述分析基本与特性曲线相符。对冲击段的分析可以看出,很大的运动加速使活塞产生很大的运动速度,但由于必须克服有杆腔不断增加的背压力及摩擦力,则活塞速度又要减慢,因此,在某个冲程处,运动速度必达最大值,此时的冲击能也达最大值。各种冲击作业应在这个冲程附近进行。冲击气缸在实际工作时,锤头模具撞击工件作完功,一般就借助行程开关发出信号使换向阀复位换向,缸即从冲击段直接转为复位段。这种状态可认为不存在弹跳段和耗能段。2)快排型冲击气缸由上述普通型冲击气缸原理可见