技术文章

电化学工作站的研究运用

北京中精仪科技有限公司 >> 进入商铺

2016/5/20 11:31:04

电化学工作站

 

     本文简要的介绍了关于电化学工作站的主要组成和相关原理,总结了近几年有关电极测试和修饰方面的方法和技术,结果发现,由于汞的污染性和汞膜镀电极的不灵敏性,目前对于汞膜镀电极的研究越来越少,对于铋膜和锑膜镀电极的研究较多,而且电极重现性及灵敏度都相对较高。另外,运用电化学工作站体系测试方便简洁,成本较低,并适合多项研究和实际应用。

 

在物理化学的众多分支中,电化学是*以大工业为基础的学科。它的应用主要有:电解工业,其中的氯碱工业是仅次于合成氨和硫酸的无机物基础工业;铝、钠等轻金属的冶炼,铜、锌等的精炼也都用的是电解法;机械工业使用电镀、电抛光、电泳涂漆等来完成部件的表面精整;环境保护可用电渗析的方法除去氰离子、铬离子等污染物;化学电源;金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题;许多生命现象如肌肉运动、神经的信息传递都涉及到电化学机理。应用电化学原理发展起来的各种电化学分析法已成为实验室和工业监控的*的手段。 

 

    电化学工作站是电化学测量系统的简称,是电化学研究和教学常用的测量设备。将这种测量系统组成一台整机,内含快速数字信号发生器、高速数据采集系统、电位电流信号滤波器、多级信号增益、IR降补偿电路以及恒电位仪、恒电流仪。可直接用于超微电极上的稳态电流测量。如果与微电流放大器及屏蔽箱连接,可测量1pA或更低的电流。如果与大电流放大器连接,电流范围可拓宽为±2A。某些实验方法的时间尺度的数量级可达l0倍,动态范围极为宽广。可进行循环伏安法、交流阻抗法、交流伏安法等测量。工作站可以同时进行四电极的工作方式。四电极可用于液/液界面电化学测量,对于大电流或低阻抗电解池(例如电池)也十分重要,可消除由于电缆和接触电阻引起的测量误差。仪器还有外部信号输入通道,可在记录电化学信号的同时记录外部输入的电压信号,例如光谱信号等。这对光谱电化学等实验极为方便。 

  电化学工作站已经是商品化的产品,不同厂商提供的不同型号的产品具有不同的电化学测量技术和功能,但基本的硬件参数指标和软件性能是相同的。 

电化学是研究电和化学反应相互关系的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现,二者统称电化学,后者为电化学的一个分支,称放电化学。因而电化学往往专指“电池的科学”。 

      三电极体系电极(electrode)是与电解质溶液或电解质接触的电子导体或半导体,为多相体系。电化学体系借助于电极实现电能的输入或输出,电极是实施电极反应的场所。一般电化学体系分为二电极体系和三电极体系,用的较多的是三电极体系。相应的三个电极为工作电极、参比电极和辅助电极。

工作电极:又称研究电极,是指所研究的反应在该电极上发生。一般来讲,对工作电极的基本要求是:工作电极可以是固体,也可以是液体,各式各样的能导电的固体材料均能用作电极。(1)所研究的电化学反应不会因电极自身所发生的反应而受到影响,并且能够在较大的电位区域中进行测定;(2)电极必须不与溶剂或电解液组分发生反应;(3)电极面积不宜太大,电极表面应是均一平滑的,且能够通过简单的方法进行表面净化等等。

辅助电极:又称对电极,辅助电极和对电极组成回路,使工作电极上电流畅通,以保证所研究的反应在工作电极上发生,但必须无任何方式限制电池观测的响应。由于工作电极发生氧化或还原反应时,辅助电极上可安排为气体的析出反应或工作电极反应的逆反应, 以使电解液组分不变, 即辅助电极的性能一般不显著影响研究电极上的反应。 但减少辅助电 极上的反应对工作电极干扰的办法可能是用烧结玻璃、 多孔陶瓷或离子交换膜等来隔离 两电极区的溶液。 为了避免辅助电极对测量到的数据产生任何特征性影响,对辅助电极的结构还是有一定 的要求。 如与工作电极相比, 辅助电极应具有大的表面积使得外部所加的极化主要作用于工 作电极上。辅助电极本身电阻要小,并且不容易极化,同时对其形状和位置也有要求。

    参比电极: 是指一个已知电势的接近于理想不极化的电极。 参比电极上基本没有电流通过,用于测定研究电极(相对于参比电极)的电极电势。在控制电位实验中,因为参比半电池 保持固定的电势,因而加到电化学池上的电势的任何变化值直接表现在工作电极/电解质溶 液的界面上。实际上,参比电极起着既提供热力学参比,又将工作电极作为研究体系隔离的 双重作用。 参比电极需要具备的一些性能:(1)具有较大的交换电流密度,是良好的可逆电极,其 电极电势符合 Nernst 方程; 2) 流过微小的电流时电极电势能迅速恢复原状; 3) 应具有良好 的电势稳定性和重现性等。 参比电极的种类:不同研究体系可选择不同的参比电极。水溶液体系中常见的参比电极 有:饱和甘汞电极(SCE)、Ag/AgCl 电极、标准氢电极(SHE 或 NHE)等。

 

电化学发展史:1791年伽伐尼发表了金属能使蛙腿肌肉抽缩的“动物电”现象,一般认为这是电化学的起源。1799年伏打在伽伐尼工作的基础上发明了用不同的金属片夹湿纸组成的“电堆”,即现今所谓“伏打堆”。这是化学电源的雏型。在直流电机发明以前,各种化学电源是*能提供恒稳电流的电源。1834年法拉第电解定律的发现为电化学奠定了定量基础。 

  19世纪下半叶,经过赫尔姆霍兹和吉布斯的工作,赋于电池的“起电力”(今称“电动势”)以明确的热力学含义;1889年能斯特用热力学导出了参与电极反应的物质浓度与电极电势的关系,即的能斯脱公式;1923年德拜和休克尔提出了人们普遍接受的强电解质稀溶液静电理论,大大促进了电化学在理论探讨和实验方法方面的发展。 

20世纪40年代以后,电化学暂态技术的应用和发展、电化学方法与光学和表面技术的联用,使人们可以研究快速和复杂的电极反应,可提供电极界面上分子的信息。电化学一直是物理化学中比较活跃的分支学科,它的发展与固体物理、催化、生命科学等学科的发展相互促进、相互渗透。

 

 

 

 

 

 

 

 

相关产品

猜你喜欢

当前客户在线交流已关闭
请电话联系他 :