起订量:
代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1
中级会员第9年
代理商 深圳市泽拓生物科技有限公司专业服务于高校、研究院、中科院,主要从事欧美先进的生命科学实验产品在中国市场的推广,包括药理实验设备,毒理实验设备,动物行为测试设备,生理实验设备,心理实验设备,运动科学,基因工程,动物学等学科的实验设备,FST医疗工具,且代理了国内高纯有机试剂、无机、生化试剂、分析试剂、金属有机催化剂、以及实验室仪器、耗材试剂、鲎试剂及配套产品以及医疗工具。
我司代理的主要品牌有:
1. 加拿大1-material
2. FST动物器械
3. Rubis镊子
4. ideal-tek镊子
5. 美国EMS
6. Dumont镊子
7. 美国Polyera
8. Erem镊子
9. spiel镊子
10. 美国IDEAL
11. 法国FACOM
12. 德国Weller
13. 德国Wiha
14. 美国Germnator
15. 美国Entegris氟塑料
16. 英国GilderGrids电镜耗材
17. 苏州66VT眼科器械
18. 上海金钟器械
19. 铜网
20. 聚四氟乙烯产品
21. 骨科器械
22. 美国WPI
我们拥有充满活力的高素质人员,具有丰富知识的技术人员和技术全面、经验丰富的售后服务人员,在推广先进质优的仪器设备的同时,为用户提供优质的售前售后服务。
只用于动物实验研究等
All our DWCNT come packed as dry powders, which can be dispersed within the user's solvent of choice.
Product code | M2016L1 |
Outer Diameter | 2-4 nm |
Internal Diameter | 1-3 nm |
Length | ~50 μm |
Specific Surface Area | 350 m2.g-1 |
Purity | > 60% |
MSDS | |
Sale Quantities | 250 mg, 500 mg, 1 g |
Packaging Information | Light-resistant bottle |
*For larger orders, please us to discuss prices.
Product code | M2017L1 | M2018L1 |
Outer Diameter | 2-4 nm | 2-4 nm |
Internal Diameter | 1-3 nm | 1-3 nm |
Length | ~ 50 μm | ~ 50 μm |
Specific Surface Area | 350 m2.g-1 | 350 m2.g-1 |
Functional Group | -COOH | -OH |
Functional Group Wt.% | ~ 2.6% | ~ 3% |
Purity | > 60% | > 60% |
MSDS | ||
Sale Quantities | 250 mg, 500 mg, 1g | |
Packaging Information | Light-resistant bottle |
*For larger orders, please us to discuss prices.
DWCNTs consist of two individual carbon nanotubes, with one embedded inside the other. The differences in diameters and the chirality of the two different nanotubes lead to a varying degree of interaction between the two, while at the same time the properties of the individual nanotubes being separate from each other. It is this wide variety of possibilities that have made DWCNTs a focus of interest for carbon nanotube research. Varying chirality allows a range of inner-wall outer-wall interactions to occur, because the chirality determines whether the nanotube will be semiconducting or metallic. It is possible to achieve metallic-metallic, semiconducting-metallic, metallic-semiconducting or semiconducting-semiconducting interactions. In addition to this, the metallic and semiconducting properties can vary depending upon the exact lattice parameters, which enables a wide range of possible property combinations.代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1 DWCNTs also have a large advantage over single-walled carbon nanotubes, as it is possible to modify the outer nanotube without changing the properties of the inner nanotube. This modification could be either through functionalisation (to add solubilising groups), or the doping of the structure (to alter the properties). This allows the double-walled system to maintain functionality of a single-walled nanotube whilst simultaneously having the solubility of functionalised nanotubes. This combination makes double-walled systems attractive for use as additives in composite materials as it allows high doping concentrations without affecting the properties of the nanotube overall.代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1 The biggest barriers for DWCNTs - with regards to further research and commercialisation - are their synthesis and purification. The yields produced by various synthesis techniques can vary from around 50% to 90% for arc discharge. Similarly, for catalytic chemical vapour deposition the yields can vary from 70% to 85%. The remainder of the nanotubes synthesised using these techniques are a mixture of single-walled and multi-walled nanotubes which then need to be purified to obtain individual double-walled nanotubes. The process of purification is much more difficult. Methods such as high-temperature oxidation result in preferential oxidation of single-walled nanotubes over double-walled. However, the process can damage the remaining nanotubes and will leave residual multi-walled contaminants behind. Other processes, such as ultra-centrifugation, can be used to obtain high-purity DWCNT samples and sort double-walled samples by outer diameter. However this process is labour and time intensive making commercialisation and large scale production of high purity DWCNTs difficult. Just like with single-walled carbon nanotubes, there are many different areas in which DWCNT's can be applied due to their impressive mechanical and electrical properties. In addition double-walled nanotubes show an increase in the mechanical strength, thermal stability, and also chemical stability over that of single-walled nanotubes. However, the ability to combine different nanotube types have the potential to result in interesting optical, electronic and mechanical properties that are not possible with single-walled nanotubes, and could result in the most interesting research in the coming years. |
Similarly to single-walled carbon nanotubes, DWCNTs are insoluble. But by using a combination of surfactants and ultrasonic vibration, it is possible to disperse and suspend small concentrations of nanotubes. For dispersing in aqueous solutions, we recommend the use of sodium dodecylbenzene sulfonate if an ionic surfactant is suitable. If a non-ionic surfactant is needed, we recommend surfactants with high molecular weights.
Functionalized DWCNT's can be dispersed without the use of surfactants, a maximum of 0.1mg/ml can be achieved for COOH and OH.
CAS number | 7440-44-0 |
Chemical formula | CxHy |
Recommended Dispersants | DI Water, DMF, THF, Ethanol, Acetone |
Synonyms | Double-Walled Carbon Nanotubes, Double Wall Carbon Nanotube, Carbon Nanotube, DWNT, DWCNT, CNT |
Classification / Family | 1d materials, Carbon nanomaterials, Nanomaterials, Polycyclic aromatic hydrocarbons, Thin-film electronics. |
Colour / Appearance | Black, fibrous powder |
Single-Wall Carbon Nanotubes
Double-Walled Carbon Nanotubes