$item.Name

首页>实验室常用设备>实验室用反应设备>其它合成反应

代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1

型号
深圳市泽拓生物科技有限公司

中级会员8年 

代理商

该企业相似产品

Ossila材料PTB7 CAS:1266549-31-8 PTB7

在线询价

Ossila材料TFB CAS:220797-16-0

在线询价

OFET测试晶片S181 Ossila测试晶片S182 代理Ossila

在线询价

英国Ossila晶片S403 OFET测试晶片S411

在线询价

代理英国Ossila材料P3HT 104934-50-1 Ossila有机光伏材料

在线询价

PDPP2T-TT-OD Ossila材料DPP-DTT 1260685-66-2 (1444870

在线询价

石墨烯 英国Ossila石墨烯氧化物E881 进口石墨烯氧化物E882

在线询价
生物技术开发服务,医疗实验室学试剂和助剂,通用仪器仪表,医学教学仪器,科学检测仪器的销售及贸易代理

   深圳市泽拓生物科技有限公司专业服务于高校、研究院、中科院,主要从事欧美先进的生命科学实验产品在中国市场的推广,包括药理实验设备,毒理实验设备,动物行为测试设备,生理实验设备,心理实验设备,运动科学,基因工程,动物学等学科的实验设备,FST医疗工具,且代理了国内高纯有机试剂、无机、生化试剂、分析试剂、金属有机催化剂、以及实验室仪器、耗材试剂、鲎试剂及配套产品以及医疗工具。
我司代理的主要品牌有:
1. 加拿大1-material
2. FST动物器械
3. Rubis镊子
4. ideal-tek镊子
5. 美国EMS
6. Dumont镊子
7. 美国Polyera
8. Erem镊子
9. spiel镊子
10. 美国IDEAL
11. 法国FACOM
12. 德国Weller
13. 德国Wiha
14. 美国Germnator
15. 美国Entegris氟塑料
16. 英国GilderGrids电镜耗材
17. 苏州66VT眼科器械
18. 上海金钟器械
19. 铜网
20. 聚四氟乙烯产品
21. 骨科器械
22. 美国WPI
   我们拥有充满活力的高素质人员,具有丰富知识的技术人员和技术全面、经验丰富的售后服务人员,在推广先进质优的仪器设备的同时,为用户提供优质的售前售后服务。

详细信息

只用于动物实验研究等

Product List

All our DWCNT come packed as dry powders, which can be dispersed within the user's solvent of choice.

Double-Walled Carbon Nanotube Powders

Product codeM2016L1
Outer Diameter2-4 nm
Internal Diameter1-3 nm
Length~50 μm
Specific Surface Area350 m2.g-1
Purity> 60%
MSDS 
Sale Quantities250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

Functionalised Double-Walled Carbon Nanotube Powders

Product codeM2017L1M2018L1
Outer Diameter2-4 nm2-4 nm
Internal Diameter1-3 nm1-3 nm
Length~ 50 μm~ 50 μm
Specific Surface Area350 m2.g-1350 m2.g-1
Functional Group-COOH-OH
Functional Group Wt.%~ 2.6%~ 3%
Purity> 60%> 60%
MSDS  
Sale Quantities250 mg, 500 mg, 1g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

What are Double-Walled Carbon Nanotubes?

DWCNTs consist of two individual carbon nanotubes, with one embedded inside the other. The differences in diameters and the chirality of the two different nanotubes lead to a varying degree of interaction between the two, while at the same time the properties of the individual nanotubes being separate from each other. It is this wide variety of possibilities that have made DWCNTs a focus of interest for carbon nanotube research. Varying chirality allows a range of inner-wall outer-wall interactions to occur, because the chirality determines whether the nanotube will be semiconducting or metallic. It is possible to achieve metallic-metallic, semiconducting-metallic, metallic-semiconducting or semiconducting-semiconducting interactions. In addition to this, the metallic and semiconducting properties can vary depending upon the exact lattice parameters, which enables a wide range of possible property combinations.代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1
 

DWCNTs also have a large advantage over single-walled carbon nanotubes, as it is possible to modify the outer nanotube without changing the properties of the inner nanotube. This modification could be either through functionalisation (to add solubilising groups), or the doping of the structure (to alter the properties). This allows the double-walled system to maintain functionality of a single-walled nanotube whilst simultaneously having the solubility of functionalised nanotubes. This combination makes double-walled systems attractive for use as additives in composite materials as it allows high doping concentrations without affecting the properties of the nanotube overall.代理Ossila 双壁碳纳米管 Ossila碳纳米管M2016L1
 

The biggest barriers for DWCNTs - with regards to further research and commercialisation - are their synthesis and purification. The yields produced by various synthesis techniques can vary from around 50% to 90% for arc discharge. Similarly, for catalytic chemical vapour deposition the yields can vary from 70% to 85%. The remainder of the nanotubes synthesised using these techniques are a mixture of single-walled and multi-walled nanotubes which then need to be purified to obtain individual double-walled nanotubes. The process of purification is much more difficult. Methods such as high-temperature oxidation result in preferential oxidation of single-walled nanotubes over double-walled. However, the process can damage the remaining nanotubes and will leave residual multi-walled contaminants behind. Other processes, such as ultra-centrifugation, can be used to obtain high-purity DWCNT samples and sort double-walled samples by outer diameter. However this process is labour and time intensive making commercialisation and large scale production of high purity DWCNTs difficult.
 

Just like with single-walled carbon nanotubes, there are many different areas in which DWCNT's can be applied due to their impressive mechanical and electrical properties. In addition double-walled nanotubes show an increase in the mechanical strength, thermal stability, and also chemical stability over that of single-walled nanotubes. However, the ability to combine different nanotube types have the potential to result in interesting optical, electronic and mechanical properties that are not possible with single-walled nanotubes, and could result in the most interesting research in the coming years.

Dispersion Guides

Similarly to single-walled carbon nanotubes, DWCNTs are insoluble. But by using a combination of surfactants and ultrasonic vibration, it is possible to disperse and suspend small concentrations of nanotubes. For dispersing in aqueous solutions, we recommend the use of sodium dodecylbenzene sulfonate if an ionic surfactant is suitable. If a non-ionic surfactant is needed, we recommend surfactants with high molecular weights.

  • Weigh out the desired amount of carbon nanotubes.
  • Mix together your solvent and surfactant of choice at the desired surfactant concentration. This should be below the critical micelle concentration of the surfactant.
  • Add the solvent-surfactant mix to the dry powder and shake vigorously to mix.
  • Either place an ultrasonic probe into the solution or place the solution into an ultrasonic bath. Be careful about the length of time and power used - as damage to the carbon nanotubes can occur, shortening their average length.
    • The resulting solution will be a mixture of suspended single walled nanotubes and bundles of single walled nanotubes; further sonication will help break up the bundles.
  • To separate out the individual nanotubes in solution from the bundles, the solution should be placed into a centrifuge. If the solution is centrifuged for a longer time and/or at a higher speed, the smaller bundles will be removed narrowing the distribution of suspended nanotubes.

Functionalized DWCNT's can be dispersed without the use of surfactants, a maximum of 0.1mg/ml can be achieved for COOH and OH.

Technical Data

General Information

CAS number7440-44-0
Chemical formulaCxHy
Recommended DispersantsDI Water, DMF, THF, Ethanol, Acetone
SynonymsDouble-Walled Carbon Nanotubes, Double Wall Carbon Nanotube, Carbon Nanotube, DWNT, DWCNT, CNT
Classification / Family1d materials, Carbon nanomaterials, Nanomaterials, Polycyclic aromatic hydrocarbons, Thin-film electronics.
Colour / AppearanceBlack, fibrous powder

1D Related Products

Single-Wall Carbon Nanotubes

Single-Wall Carbon Nanotubes

Double-Walled Carbon Nanotubes

Double-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Double-Walled Carbon Nanotube Publications

  • Double-Walled Carbon Nanotubes: Challenges and Opportunities, C. Shen et. al. Nanoscale, 3, 503-518, (2010) DOI: 10.1039/C0NR00620C
  • Properties and Applications of Double-Walled Carbon Nanotubes Sorteb by Outer-Wall Electronic Type. A. A. Green et. al., ACS Nano, 5, 2011, 1459-1467, (2011) DOI: 10.1021/nn103263b
  • Linking Chiral Indicies and Transport Properties of Double-Walled Carbon Nanotubes, M. Kociak et. al., Phys. Rev. Lett., 89, 155501, (2002), DOI: 10.1103/PhysRevLett.89.155501
  • Double-Walled Carbon Nanotube Solar Cells. J. Wei et. al., Nano Lett., 7, 2317-2321, (2007) DOI: 10.1021/nl070961c
  • Raman Spectroscopy Study of Isolated Double-Walled Carbon Nanotubes with Different Metallic and Semiconducting Configurations, F. Villalpando-Paez et. al., Nano Lett., 8, 3879-3886, (2008), DOI: 10.1021/nl802306t

相关技术文章

同类产品推荐

相关分类导航

产品参数

企业未开通此功能
详询客服 : 0571-87858618
提示

请选择您要拨打的电话:

当前客户在线交流已关闭
请电话联系他 :